Memo: UVHS5 file format

Paul La Plante, and the pyuvdata team

November 28, 2018

Contents
1 Introduction 1
2 Overview 2
3 Header 2
3.1 Required Parameters 3
3.2 Optional Parameters 0)
3.3 Extra Keywords)
4 Data 6
4.1 Visdata Dataset e 6
4.2 Flags Dataset L 7
4.3 Nsamples Dataset L o 7
Appendices 8
Appendix A Writing Strings from h5py 8
Al python2 oo 8
A2 python3 e 9
Appendix B Integer Datatype Support for Visibility Data 9
Appendix C Defining numpy Boolean Arrays in C 10

1 Introduction

This memo introduces a new HDF5'-based file format of a UVData object in pyuvdata?,
a python package that provides an interface to interferometric data. Here, we describe the

"https://www.hdfgroup.org/
’https://github.com/HERA-Team/pyuvdata

https://www.hdfgroup.org/
https://github.com/HERA-Team/pyuvdata

required and optional elements and the structure of this file format, called UVHS5.

Note that this file format is specifically designed to represent UVData objects. Other
HDF5-based datasets for radio interferometers, such as katdal® or HDFITS?* are not com-
patible with the standard as defined here. We refer the reader to the documentation of
those other formats to find out more about them.

We assume that the user has a working knowledge of HDF5 and the associated python
bindings in the package h5py”, as well as UVData objects in pyuvdata. For more infor-
mation about HDF5, please visit https://portal.hdfgroup.org/display/HDF5/HDF5.
For more information about the parameters present in a UVData object, please visit
http://pyuvdata.readthedocs.io/en/latest/uvdata_parameters.html. An example
for how to interact with UVData objects in pyuvdata is available at http://pyuvdata.
readthedocs.io/en/latest/tutorial .html.

2 Overview

A UVHS5 object contains the interferometric data from a radio telescope, as well as the
associated metadata necessary to interpret it. A UVHS5 file contains two primary HDF5
groups: the Header group, which contains the metadata, and the Data group, which con-
tains the data itself, the flags, and information about the number of samples corresponding
to the data. Datasets in the Data group are also typically passed through HDF5’s compres-
sion pipeline, to reduce the amount of on-disk space required to store the data. However,
because HDF5 is aware of any compression applied to a dataset, there is little that the
user has to explicitly do when reading data. For users interested in creating new files, the
use of compression is not strictly required by the UVH5 format, again because the HDF5
file is self-documenting in this regard. However, be warned that most UVHS files “in the
wild” typically feature compression of datasets in the Data group.

In the disucssion below, we discuss required and optional datasets in the various groups.
We note in parenthesis the corresponding attribute of a UVData object. Note that in nearly
all cases, the names are coincident, to make things as transparent as possible to the user.

3 Header

The Header group of the file contains the metadata necessary to interpret the data. We
begin with the required parameters, then continue to optional ones. Unless otherwise
noted, all datasets are scalars (i.e., not arrays). The precision of the data type is also
not specified as part of the format, because in general the user is free to set it according
to the desired use case (and HDF5 records the precision and endianness when generating

3https://github.com/ska-sa/katdal
“https://github.com/telegraphic/fits2hdf
Shttps://www.hbpy.org/

https://portal.hdfgroup.org/display/HDF5/HDF5
http://pyuvdata.readthedocs.io/en/latest/uvdata_parameters.html
http://pyuvdata.readthedocs.io/en/latest/tutorial.html
http://pyuvdata.readthedocs.io/en/latest/tutorial.html
https://github.com/ska-sa/katdal
https://github.com/telegraphic/fits2hdf
https://www.h5py.org/

datasets). When using the standard h5py-based implementation in pyuvdata, this typically
results in 32-bit integers and double precision floating point numbers. Each entry in the list
contains (1) the exact name of the dataset in the HDF5 file, in boldface, (2) the expected
datatype of the dataset, in italics, (3) a brief description of the data, and (4) the name
of the corresponding attribute on a UVData object. Note that unlike in other formats,
names of HDF5 datasets can be quite long, and so in most cases the name of the dataset
corresponds to the name of the UVData attribute.

Note that string datatypes should be handled with care. See Appendix A for appropri-
ately defining them for interoperability between different HDF5 implementations.

3.1

Required Parameters

latitude: float The latitude of the telescope site, in degrees. (latitude)
longitude: float The longitude of the telescope site, in degrees. (longitude)
altitude: float The altitude of the telescope site, in meters. (altitude)

telescope_name: string The name of the telescope used to take the data. The value
is used to check that metadata is self-consistent for known telescopes in pyuvdata.
(telescope_name)

instrument: string The name of the instrument, typically the telescope name. (in-
strument)

object_name: string The name of the object tracked by the telescope. For a drift-
scan antenna, this is typically “zenith”. (object_name)

history: string The history of the data file. (history)

phase_type: string The phase type of the observation. Should be “phased” or
“drift”. Any other value is treated as an unrecognized type. (phase_type)

Nants_data: int The number of antennas that data in the file corresponds to. May
be smaller than the number of antennas in the array. (Nants_data)

Nants_telescope: int The number of antennas in the array. May be larger than the
number of antennas with data corresponding to them. (Nants_telescope)

ant_1_array: int An array of the first antenna indices corresponding to baselines
present in the data. This is a one-dimensional array of size Nblts. (ant_1_array)

ant_2_array: int An array of the second antenna indices corresponding to baselines
present in the data. This is a one-dimensional array of size Nblts. (ant_2_array)

antenna_names: string An array of the names of antennas present in the array.
This is a one-dimensional array of size Nants_telescope. Note there must be one
entry for every unique antenna in ant_l1_array and ant_2_array, but there may be
additional entries. (antenna_names)

Nbls: int the number of baselines present in the data. For full cross-correlation data
(including auto-correlations), this should be Nants_datax (Nants_data+1)/2. (Nbls)

Nblts: int The number of baseline-times (i.e., the number of spectra) present in the
data. Note that this value need not be equal to Nbls x Ntimes. (Nblts)

Nfregs: int The number of frequency channels in the data. (Nfregs)
Npols: int The number of polarization products in the data. (Npols)
Ntimes: int The number of time samples present in the data. (Ntimes)
Nspws: int The number of spectral windows present in the data. (Nspws)

uvw_array: float An array of the uvw-coordinates corresponding to each observation
in the data. This is a two-dimensional array of size (Nblts, 3). (uvw_array)

time_array: float An array of the Julian Date corresponding to the center of an
integration. This is a one-dimensional array of size Nblts. (time_array)

integration_time: float An array of the length of time in seconds of an integration.
This is a one-dimensional array of size Nblts. (time_array)

freq_array: float An array of the frequencies stored in the file in Hertz. This is a
two-dimensional array of size (Nspws, Nfregs). (freq_array)

channel width: float The width of frequency channels in the file in Hertz. (chan-
nel_width)

spw_array: int An array of the spectral windows in the file. This is a one-dimensional
array of size Nspws. (spw_array)

polarization_array: int An array of the polarizations contained in the file. This is a
one-dimensional array of size Npols. Note that the polarizations should be stored as
an integer, and use the convention defined in AIPS Memo 117. (polarization_array)

antenna_positions: float An array of the antenna coordinates relative to the tele-
scope_location (in the ITRF frame). This is a two-dimensional array of size (Nants_telescope,
3). (antenna_positions)

3.2

3.3

Optional Parameters

dutl: float DUT1 (google it). AIPS 117 calls it “UT1UTC”. (dutl)
earth_omega: float Earth’s rotation rate in degrees per day. (earth_omega)
gst0: float Greenwich sidereal time at midnight on reference date. (gst0)

rdate: string Date for which GSTO (or whichever time saved in that field) applies.
(rdate)

timesys: string Time system. pyuvdata currently only supports UTC. (timesys)

x_orientation: string The orientation of the x-arm of a dipole antenna. It is assumed
to be the same for all antennas in the dataset. For instance, “E” or “East” may be
used. (z_orientation).

antenna_diameters: float An array of the diameters of the antennas in meters.
This is a one-dimensional array of size (Nants_telescope). (Nants_telescope)

uvplane_reference_time: int The time at which the phase center is normal to the
chosen UV plane for phasing. Used for interoperability with the FHD package®.

phase_center_ra: float The right ascension of the phase center of the observation
in radians. Required if phase_type is “phased”. (phase_center_ra)

phase_center_dec: float The declination of the phase center of the observation in
radians. Required if phase_type is “phased”. (phase_center_dec).

phase_center_epoch: float The epoch year of the phase applied to the data (e.g.,
2000.). Required if phase_type is “phased”. (phase_center_epoch)

phase_center_frame: string The frame the data and uvw_array are phased to.
Options are “gers” and “icrs”, with default “icrs”. (phase_center_frame)

Ist_array: float An array corresponding to the local sidereal time of the center of
each observation in the data in units of radians. If it is not specified, it is calculated
from the latitude/longitude and the time_array. (Ist_array)

Extra Keywords

UVData objects support “extra keywords”, which are additional bits of arbitrary metadata
useful to carry around with the data but which are not formally supported as a reserved
keyword in the Header. In a UVHS5 file, extra keywords are handled by creating a datagroup

Shttps://github.com/EoRImaging/FHD

https://github.com/EoRImaging/FHD

called extra_keywords inside the Header datagroup. In a UVData object, extra keywords
are expected to be scalars, but UVH5 makes no formal restriction on this. Inside of the
extra_keywords datagroup, each extra keyword is saved as a key-value pair using a dataset,
where the name of the extra keyword is the name of the dataset and its corresponding
value is saved in the dataset. Though the use of HDF5 attributes can also be used to save
additional metadata, it is not recommended, due to the lack of support inside of pyuvdata
for ensuring the attributes are properly saved when writing out.

4 Data

In addition to the Header datagroup in the root namespace, there must be one called Data.
This datagroup saves the visibility data, flags, and number of samples corresponding to each
entry. All three datasets must be present in a valid UVHS5 file. They are also all expected
to be the same shape: (Nblts, Nspws, Nfregs, Npols). Note that due to the intermixing of
the baseline and time axes, it is not required for data to exist for every baseline and time
in the file. This behavior is similar to UVFITS and MIRIAD file formats. Also note that
there is no explicit ordering required for the baseline-time axis. A common ordering is to
write the data in “correlator order”, and have all baselines for a single time t;, followed by
all baselines for the next time ¢;11, etc. However, this is merely a convention, and is not
explicitly required for the UVHS5 format.

4.1 Visdata Dataset

The visibility data is saved as a dataset named visdata. It should be a 4-dimensional,
complex-type dataset with shape (Nblts, Nspws, Nfreqs, Npols). Most commonly this
is saved as an 8-byte complex number (a 4-byte float for the real and imaginary parts),
though some flexibility is possible. 16-byte complex floating point numbers (composed of
two 8-byte floats), as well as 8-byte complex integers (two 4-byte signed integers). In all
cases, a compound datatype is defined, with an “r' field and an ~i' field, corresponding to
the real and imaginary parts, respectively. The real and imaginary types must also be the
same datatype. For instance, they should both be 8-byte floating point numbers, or 32-bit
(4-byte) integers. Mixing datatypes between the real and imaginary parts is not allowed.

Using h5py, the datatype for visdata can be specified as ~c8' (8-byte complex num-
bers, corresponding to the np.complex64 datatype) or ~c16' (16-byte complex numbers,
corresponding to the np.complex128 datatype) out-of-the-box, with no special handling
by the user. hb5py transparently handles the definition of the compound datatype. For
examples of how to handle complex integer datatypes in h5py, see Appendix B.

4.2 Flags Dataset

The flags corresponding to the data are saved as a dataset named flags. It is a 4-
dimensional, boolean-type dataset with shape (Nblts, Nspws, Nfreqs, Npols). Values of
True correspond to instances of flagged data, and False is non-flagged. Note that the
boolean type of the data is not the HDF5-provided H5T_NATIVE_HBOOL, and instead is
defined to conform to the h5py implementation of the numpy boolean type. When creat-
ing this dataset from h5py, one can specify the datatype as np.bool. Behind the scenes,
this defines an HDF5 enum datatype. See Appendix C for an example of how to write a
compatible dataset from C.

As with the nsamples dataset discussed below, compression is typically applied to the
flags dataset. The LZF filter (included in all HDF5 libraries) provides a good compromise
between speed and compression. In the special cases of single-valued arrays, the dataset
occupies virtually no disk space.

4.3 Nsamples Dataset

The number of data points averaged into each data entry is saved as a dataset named
nsamples. It is a 4-dimensional, floating-point type dataset with shape (Nblts, Nspws,
Nfregs, Npols). Note that it is not required to be an integer, and should not be saved as
an integer type. The product of the integration_time array and the data in the nsample
array reflects the total amount of time that went into a visibility. The best practice is for
the nsamples dataset to track flagging within an integration time (leading to a decrease of
the nsamples array value to be less than 1) and LST averaging (leading to an increase in
the nsamples array value). Datasets that have not been LST averaged should have values
in nsamples that are less than or equal to 1. Although this convention is not adhered
to by all data formats serviced by pyuvdata, it is recommended to follow it as closely as
possible in UVHS5 files. What should be true is the product of the integration_time array
and nsamples array corresponding to the total amount of time included in a visibility.

Appendix A Writing Strings from h5py

String datatypes are finicky, and require special handling to ensure that they are compatible
with the HDF5 bindings in various languages. This is especially true for files written from
h5py, which handles strings differently between python2 and python3. Though python2 is
nearing its end-of-life, UVH5 should be backwards compatible with older versions of h5py
as much as possible. To help service this, all string-type metadata in UVHS5 files must be
fixed-length ASCII type. Not only does this allow for interoperability between different
hb5py versions, but it also ensures that strings can be round-tripped through other HDF5
bindings, such as those in C, MATLAB, IDL, Fortran’, etc. Note that the string should
use one byte per character, and be null-terminated. This corresponds to the numpy S
datatype in both versions of python2 and python3.

When writing a string-like dataset from h5py, scalar data should be written by casting
a string to a numpy . string_ object. Array data should be written as a S<n> dataset, where
<n> represents the length of the strings to be saved. Upon reading, strings can be cast to
bytes using the tostring() method, at which point the data is <str>-type (python2) or
can be decoded as UTF-8 to become <str>-type (python3).

Below is an example for how to read and write string scalar and array-type datasets
using h5py in python2 and python3.

A.1 python2

import numpy as np
import hbpy
open file and write string datasets
with hbpy.File('test_file.uvh5', 'w') as f:
header = f.create_group('Header')
scalar dataset
header['scalar_string'] = np.string_('Hello world!')

array dataset

str_array = np.array(['hello', 'world'])

n_words = len(str_array)

max_len_words = np.amax([len(n) for n in str_array])

dtype = "S{:d}".format(max_len_words)

header.create_dataset('array_string', (n_words,), dtype=dtype,
data=str_array)

read the data back in again
with hbpy.File('test_file.uvh5', 'r') as f:

"Strings in Fortran are not null-terminated, so these require special handling.

header = f['Header']

read scalar dataset

scalar_string = header['scalar_string'].value.tostring()
assert scalar_string == 'Hello world!'

read array dataset
str_array_file = [n.tostring() for n in header['array_string'].valuel
assert np.all(str_array_file == str_array)

A.2 python3

import numpy as np
import hbpy
open file and write string datasets
with hbpy.File('test_file.uvh5', 'w') as f:
header = f.create_group('Header')
scalar dataset
header['scalar_string'] = np.string_('Hello world!")

array dataset
str_array = ['hello', 'world']
header['array_string'] = np.string_(str_array)

read the data back in again
with hbpy.File('test_file.uvh5', 'r') as f:
header = f['Header']
read scalar dataset
scalar_string = header['scalar_string'].value.tostring().decode('UTF-8')
assert scalar_string == 'Hello world!'

read array dataset
str_array_file = [n.tostring().decode('UTF-8')

for n in header['array_string'].value]
assert np.all(str_array_file == str_array)

Appendix B Integer Datatype Support for Visibility Data

The HERA correlator writes datasets which have 32-bit integer real and imaginary com-
ponents. Due to the self-describing nature of HDF5 datasets, this information is captured
by the file format. Nevertheless, special handling must be used to interpret these datasets

as complex numbers. The astype context manager in h5py is used to convert the datatype
on the fly from integers to complex numbers. Below is an example of how to do this.

import numpy as np

import hbpy

define integer datatype

int_dtype = np.dtype([('r', '<id'), ('i', '<i4")])

open file and read in the dataset
with hbpy.File('test_file.uvh5', 'r') as f:
visdata = f['Data/visdata']
dshape = visdata.shape
data = np.empty(dshape, dtype=np.complex128)
with visdata.astype(int_dtype):
data.real = visdatal'r']1[:, :, :, :]
data.imag = visdatal'i'][:, :, :, :]

Appendix C Defining numpy Boolean Arrays in C

As mentioned in Sec. 4.2, the flags array in a UVHS5 file uses an HDF5 enum datatype
to encode the numpy boolean type. When creating such a datatype using h5py, the user
simply needs to ensure the datatype is np.bool. The building of the enum is transparent.
When building the enum from a different language, the precise specification is necessary
to ensure compatibility. The following code is a template for how to build the appropriate
datatype using C. The construction in other languages, such as Fortran, should follow
analogously.

#include <hdf5.h>
#define CPTR(VAR,CONST) ((VAR)=(CONST),&(VAR))

typedef enum {
FALSE,
TRUE

} bool_t;

int main() {
bool_t val;
static hid_t boolenumtype;
hid_t file_id, dspace_id, flags_id;
herr_t status;

10

/* define enum type */

boolenumtype = H5Tcreate (H5T_ENUM, sizeof (bool_t));
H5Tenum_insert(boolenumtype, "FALSE", CPTR(val, FALSE));
H5Tenum_insert (boolenumtype, "TRUE" , CPTR(val, TRUE));

/* open a new file */
file_id = H5Fcreate("test_file.h5", HS5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT) ;

/% define array dimensions */

int Nblts = 10;

int Nspws = 1;

int Nfreqs = 16;

int Npols = 4;

hsize_t dims[4] = {Nblts, Nspws, Nfreqs, Npols};

/* initialize data array with FALSE values */
bool_t datal[Nblts] [Nspws] [Nfreqgs] [Npols];
for (int i=0; i<Nblts; i++) {
for (int j=0; j<Nspws; j++) {
for (int k=0; k<Nfreqs; k++) {
for (int 1=0; 1<Npols; 1++) {
data[i] [j] [k][1] = FALSE;
}
}
}
}

/* make dataspace and write out data */
dspace_id = HbScreate_simple(4, dims, dims);
flags_id = H5Dcreate(file_id, "flags", boolenumtype, dspace_id,
H5P_DEFAULT, H5P_DEFAULT, HS5P_DEFAULT);
status = H5Dwrite(flags_id, boolenumtype, HS5S_ALL, H5S_ALL,
H5P_DEFAULT, data);

/* close down */
H5Dclose(flags_id);
H5Sclose(dspace_id) ;
HS5Fclose(file_id);
return O;

11

	Introduction
	Overview
	Header
	Required Parameters
	Optional Parameters
	Extra Keywords

	Data
	Visdata Dataset
	Flags Dataset
	Nsamples Dataset

	Appendices
	Appendix Writing Strings from h5py
	python2
	python3

	Appendix Integer Datatype Support for Visibility Data
	Appendix Defining numpy Boolean Arrays in C

