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Welcome to Programming Languages

The top of the course web page has four documents with important information not repeated here. They
are the syllabus, the academic-integrity policy, the challenge-program policy, and a description of how this
course relates to a course offered on Coursera. Read these documents thoroughly.

A course titled, “Programming Languages” can mean many different things. For us, it means the opportunity
to learn the fundamental concepts that appear in one form or another in almost every programming language.
We will also get some sense of how these concepts “fit together” to provide what programmers need in a
language. And we will use different languages to see how they can take complementary approaches to
representing these concepts. All of this is intended to make you a better software developer, in any language.

Many people would say this course “teaches” the 3 languages ML, Racket, and Ruby, but that is fairly
misleading. We will use these languages to learn various paradigms and concepts because they are well-
suited to do so. If our goal were just to make you as productive as possible in these three languages, the
course material would be very different. That said, being able to learn new languages and recognize the
similarities and differences across languages is an important goal.

Most of the course will use functional programming (both ML and Racket are functional languages), which
emphasizes immutable data (no assignment statements) and functions, especially functions that take and
return other functions. As we will discuss later in the course, functional programming does some things
exactly the opposite of object-oriented programming but also has many similarities. Functional programming
is not only a very powerful and elegant approach, but learning it helps you better understand all styles of
programming.

The conventional thing to do at the very beginning of a course is to motivate the course, which in this case
would explain why you should learn functional programming and more generally why it is worth learning



different languages, paradigms, and language concepts. We will largely delay this discussion for approxi-
mately two weeks. It is simply too important to cover when most students are more concerned with getting
a sense of what the work in the course will be like, and, more importantly, it is a much easier discussion to
have after we have built up a few lectures of shared terminology and experience. Motivation does matter;
let’s take a “rain-check” with the promise that it will be well worth it.

ML Expressions and Variable Bindings

So let’s just start “learning ML” but in a way that teaches core programming-languages concepts rather
than just “getting down some code that works.” Therefore, pay extremely careful attention to the words
used to describe the very, very simple code we start with. We are building a foundation that we will expand
very quickly over this week and next week. Do not yet try to relate what you see back to what you already
know in other languages as that is likely to lead to struggle.

An ML program is a sequence of bindings. Each binding gets type-checked and then (assuming it type-checks)
evaluated. What type (if any) a binding has depends on a static environment,! which is roughly the types
of the preceding bindings in the file. How a binding is evaluated depends on a dynamic environment, which
is roughly the values of the preceding bindings in the file. When we just say environment, we usually mean
dynamic environment. Sometimes context is used as a synonym for static environment.

There are several kinds of bindings, but for now let’s consider only a variable binding, which in ML has this
syntaz:

val x = e;

Here, val is a keyword, x can be any variable, and e can be any expression. We will learn many ways to
write expressions. The semicolon is optional in a file, but necessary in the read-eval-print loop to let the
interpreter know that you are done typing the binding.

We now know a variable binding’s syntax (how to write it), but we still need to know its semantics (how it
type-checks and evaluates). Mostly this depends on the expression e. To type-check a variable binding, we
use the “current static environment” (the types of preceding bindings) to type-check e (which will depend on
what kind of expression it is) and produce a “new static environment” that is the current static environment
except with x having type t where t is the type of e. Evaluation is analogous: To evaluate a variable
binding, we use the “current dynamic environment” (the values of preceding bindings) to evaluate e (which
will depend on what kind of expression it is) and produce a “new dynamic environment” that is the current
environment except with x having the value v where v is the result of evaluating e.

A walue is an expression that, “has no more computation to do,” i.e., there is no way to simplify it. As
described more generally below, 17 is a value, but 8+9 is not. All values are expressions. Not all expressions
are values.

This whole description of what ML programs mean (bindings, expressions, types, values, environments) may
seem awfully theoretical or esoteric, but it is exactly the foundation we need to give precise and concise
definitions for several different kinds of expressions. Here are several such definitions:

e Integer constants:

— Syntax: a sequence of digits
— Type-checking: type int in any static environment

— Evaluation: to itself in any dynamic environment (it is a value)

IThe word static here has a tenuous connection to its use in Java/C/C+++, but too tenuous to explain at this point.



e Addition:

— Syntax: el+e2 where el and e2 are expressions

— Type-checking: type int but only if el and e2 have type int in the same static environment, else
does not type-check

— Evaluation: evaluate el to vl and e2 to v2 in the same dynamic environment and then produce
the sum of v1 and v2

e Variables:

— Syntax: a sequence of letters, underscores, etc.
— Type-checking: look up the variable in the current static environment and use that type

— Evaluation: look up the variable in the current dynamic environment and use that value
e Conditionals:

— Syntax is if el then e2 else e3 where el, €2, and e3 are expressions

— Type-checking: using the current static environment, a conditional type-checks only if (a) el has
type bool and (b) e2 and e3 have the same type. The type of the whole expression is the type of
e2 and e3.

— Evaluation: under the current dynamic environment, evaluate el. If the result is true, the result
of evaluating e2 under the current dynamic environment is the overall result. If the result is
false, the result of evaluating e3 under the current dynamic environment is the overall result.

e Boolean constants:

— Syntax: either true or false
— Type-checking: type bool in any static environment

— Evaluation: to itself in any dynamic environment (it is a value)
e Less-than comparison:

— Syntax: el < e2 where el and e2 are expressions

— Type-checking: type bool but only if el and e2 have type int in the same static environment,
else does not type-check

— Evaluation: evaluate el to vl and e2 to v2 in the same dynamic environment and then produce
true if v1 is less than v2 and false otherwise

Whenever you learn a new construct in a programming language, you should ask these three
questions: What is the syntax? What are the type-checking rules? What are the evaluation
rules?

Using use
When using the read-eval-print loop, it is very convenient to add a sequence of bindings from a file.
use "foo.sml";

does just that. Its type is unit and its result is () (the only value of type unit), but its effect is to include
all the bindings in the file "foo.sml".



Variables are Immutable

Bindings are immutable. Given val x = 8+9; we produce a dynamic environment where x maps to 17. In
this environment, x will always map to 17; there is no “assignment statement” in ML for changing what
x maps to. That is very useful if you are using x. You can have another binding later, say val x = 19;,
but that just creates a different environment where the later binding for x shadows the earlier one. This
distinction will be extremely important when we define functions that use variables.

Function Bindings

Recall that an ML program is a sequence of bindings. Each binding adds to the static environment (for
type-checking subsequent bindings) and to the dynamic environment (for evaluating subsequent bindings).
We already introduced variable bindings; we now introduce function bindings, i.e., how to define and use
functions. We will then learn how to build up and use larger pieces of data from smaller ones using pairs
and lists.

A function is sort of like a method in languages like Java — it is something that is called with arguments
and has a body that produces a result. Unlike a method, there is no notion of a class, this, etc. We also do
not have things like return statements. A simple example is this function that computes ¥ assuming y > 0:

fun pow (x:int, y:int) = (% correct only for y >= 0 *)
if y=0
then 1
else x * pow(x,y-1)

Syntax:

The syntax for a function binding looks like this (we will generalize this definition a little later in the course):

fun x0 (x1 : t1, ..., Xn : tn) = e
This is a binding for a function named x0. It takes n arguments x1, ... xn of types t1, ..., tn and has an
expression e for its body. As always, syntax is just syntax — we must define the typing rules and evaluation
rules for function bindings. But roughly speaking, in e, the arguments are bound to x1, ... xn and the result

of calling x0 is the result of evaluating e.
Type-checking:

To type-check a function binding, we type-check the body e in a static environment that (in addition to
all the earlier bindings) maps x1 to t1, ... xn to tn and x0 to t1 * ... * tn -> t. Because x0 is in the
environment, we can make recursive function calls, i.e., a function definition can use itself. The syntax of
a function type is “argument types” -> “result type” where the argument types are separated by * (which
just happens to be the same character used in expressions for multiplication). For the function binding
to type-check, the body e must have the type t, i.e., the result type of x0. That makes sense given the
evaluation rules below because the result of a function call is the result of evaluating e.

But what, exactly, is t — we never wrote it down? It can be any type, and it is up to the type-checker (part
of the language implementation) to figure out what t should be such that using it for the result type of x0
makes, “everything work out.” For now, we will take it as magical, but type inference (figuring out types
not written down) is a very cool feature of ML discussed later in the course. It turns out that in ML you



almost never have to write down types. Soon the argument types t1, ..., tn will also be optional but not
until we learn pattern matching a little later.?

After a function binding, x0 is added to the static environment with its type. The arguments are not added
to the top-level static environment — they can be used only in the function body.

FEvaluation:

The evaluation rule for a function binding is trivial: A function is a value — we simply add %0 to the envi-
ronment as a function that can be called later. As expected for recursion, x0 is in the dynamic environment
in the function body and for subsequent bindings (but not, unlike in say Java, for preceding bindings, so the
order you define functions is very important).

Function calls:

Function bindings are useful only with function calls, a new kind of expression. The syntax ise0 (el,...,en)
with the parentheses optional if there is exactly one argument. The typing rules require that e0 has a

type that looks like t1x...*tn->t and for 1 < i < n, ei has type ti. Then the whole call has type t.

Hopefully, this is not too surprising. For the evaluation rules, we use the environment at the point of
the call to evaluate €0 to vO, el to v1, ..., en to von. Then vO must be a function (it will be assuming the

call type-checked) and we evaluate the function’s body in an environment extended such that the function

arguments map to vi, ..., vn.

Exactly which environment is it we extend with the arguments? The environment that “was current” when
the function was defined, not the one where it is being called. This distinction will not arise right now, but
we will discuss it in great detail later.

Putting all this together, we can determine that this code will produce an environment where ans is 64:

fun pow (x:int, y:int) = (% correct only for y >= 0 *)
if y=0
then 1
else x * pow(x,y-1)

fun cube (x:int) =
pow(x,3)

val ans = cube(4)

Pairs and Other Tuples

Programming languages need ways to build compound data out of simpler data. The first way we will learn
about in ML is pairs. The syntax to build a pair is (el,e2) which evaluates el to vl and e2 to v2 and
makes the pair of values (v1,v2), which is itself a value. Since v1 and/or v2 could themselves be pairs
(possibly holding other pairs, etc.), we can build data with several “basic” values, not just two, say, integers.
The type of a pair is t1*t2 where t1 is the type of the first part and t2 is the type of the second part.

Just like making functions is useful only if we can call them, making pairs is useful only if we can later
retrieve the pieces. Until we learn pattern-matching, we will use #1 and #2 to access the first and second
part. The typing rule for #1 e or #2 e should not be a surprise: e must have some type that looks like
ta * tb and then #1 e has type ta and #2 e has type tb.

Here are several example functions using pairs. div_mod is perhaps the most interesting because it uses a

2The way we are using pair-reading constructs like #1 in this unit and Homework 1 requires these explicit types.



pair to return an answer that has two parts. This is quite pleasant in ML, whereas in Java (for example)
returning two integers from a function requires defining a class, writing a constructor, creating a new object,
initializing its fields, and writing a return statement.

fun swap (pr : intx*bool) =
(#2 pr, #1 pr)

fun sum_two_pairs (prl : int*int, pr2 : int*int) =
(#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) = (* note: returning a pair is a real pain in Java *)
(x div y, x mod y)

fun sort_pair (pr : intxint) =
if (#1 pr) < (#2 pr)
then pr
else ((#2 pr), (#1 pr))

In fact, ML supports tuples by allowing any number of parts. For example, a 3-tuple (i.e., a triple) of integers
has type int*int*int. An example is (7,9,11) and you retrieve the parts with #1 e, #2 e, and #3 e where
e is an expression that evaluates to a triple.

Pairs and tuples can be nested however you want. For example, (7, (true,9)) is a value of type int * (bool * int),
which is different from ((7,true),9) which has type (int * bool) * int or (7,true,9) which has type
int * bool * int.

Lists

Though we can nest pairs of pairs (or tuples) as deep as we want, for any variable that has a pair, any
function that returns a pair, etc. there has to be a type for a pair and that type will determine the amount
of “real data.” Even with tuples the type specifies how many parts it has. That is often too restrictive; we
may need a list of data (say integers) and the length of the list is not yet known when we are type-checking
(it might depend on a function argument). ML has lists, which are more flexible than pairs because they can
have any length, but less flexible because all the elements of any particular list must have the same type.

The empty list, with syntax [, has 0 elements. It is a value, so like all values it evaluates to itself immediately.
It can have type t list for any type t, which ML writes as *a list (pronounced “quote a list” or “alpha
list”). In general, the type t list describes lists where all the elements in the list have type t. That holds
for [] no matter what t is.

A non-empty list with n values is written [v1,v2,...,vn]. You can make a list with [el,...,en] where
each expression is evaluated to a value. It is more common to make a list with el :: e2, pronounced “el
consed onto e2.” Here el evaluates to an “item of type t” and e2 evaluates to a “list of t values” and the
result is a new list that starts with the result of el and then is all the elements in e2.

As with functions and pairs, making lists is useful only if we can then do something with them. As with
pairs, we will change how we use lists after we learn pattern-matching, but for now we will use three functions
provided by ML. Each takes a list as an argument.

e null evaluates to true for empty lists and false for nonempty lists.

e hd returns the first element of a list, raising an exception if the list is empty.



e t1 returns the tail of a list (a list like its argument but without the first element), raising an exception
if the list is empty.

Here are some simple examples of functions that take or return lists:

fun sum_list (xs : int list) =
if null xs
then O
else hd(xs) + sum_list(tl xs)

fun countdown (x : int) =
if x=0
then []
else x :: countdown(x-1)

fun append (xs : int list, ys : int list) =
if null xs
then ys
else (hd xs) :: append(tl xs, ys)

Functions that make and use lists are almost always recursive because a list has an unknown length. To
write a recursive function, the thought process involves thinking about the base case — for example, what
should the answer be for an empty list — and the recursive case — how can the answer be expressed in
terms of the answer for the rest of the list.

When you think this way, many problems become much simpler in a way that surprises people who are used
to thinking about while loops and assignment statements. A great example is the append function above
that takes two lists and produces a list that is one list appended to the other. This code implements an
elegant recursive algorithm: If the first list is empty, then we can append by just evaluating to the second
list. Otherwise, we can append the tail of the first list to the second list. That is almost the right answer,
but we need to “cons on” (using :: has been called “consing” for decades) the first element of the first list.
There is nothing magical here — we keep making recursive calls with shorter and shorter first lists and then
as the recursive calls complete we add back on the list elements removed for the recursive calls.

Finally, we can combine pairs and lists however we want without having to add any new features to our
language. For example, here are several functions that take a list of pairs of integers. Notice how the
last function reuses earlier functions to allow for a very short solution. This is very common in functional
programming. In fact, it should bother us that firsts and seconds are so similar but we do not have them
share any code. We will learn how to fix that later.

fun sum_pair_list (xs : (int * int) list) =
if null xs
then 0O
else #1 (hd xs) + #2 (hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int * int) list) =
if null xs
then []
else (#1 (hd xs))::(firsts(tl xs))

fun seconds (xs : (int * int) list) =



if null xs
then []
else (#2 (hd xs))::(seconds(tl xs))

fun sum_pair_list2 (xs : (int * int) list) =
(sum_list (firsts xs)) + (sum_list (seconds xs))

Let Expressions

Let-expressions are an absolutely crucial feature that allows for local variables in a very simple, general,
and flexible way. Let-expressions are crucial for style and for efficiency. A let-expression lets us have local
variables. In fact, it lets us have local bindings of any sort, including function bindings. Because it is a kind
of expression, it can appear anywhere an expression can.

Syntactically, a let-expression is:
let b1 b2 ... bn in e end

where each bi is a binding and e is an expression.

The type-checking and semantics of a let-expression are much like the semantics of the top-level bindings
in our ML program. We evaluate each binding in turn, creating a larger environment for the subsequent
bindings. So we can use all the earlier bindings for the later ones, and we can use them all for e. We call the
scope of a binding “where it can be used,” so the scope of a binding in a let-expression is the later bindings
in that let-expression and the “body” of the let-expression (the e). The value e evaluates to is the value for
the entire let-expression, and, unsurprisingly, the type of e is the type for the entire let-expression.

For example, this expression evaluates to 7; notice how one inner binding for x shadows an outer one.

let val x =1
in

(let val x = 2 in x+1 end) + (let val y = x+2 in y+1 end)
end

Also notice how let-expressions are expressions so they can appear as a subexpression in an addition (though
this example is silly and bad style because it is hard to read).

Let-expressions can bind functions too, since functions are just another kind of binding. If a helper function
is needed by only one other function and is unlikely to be useful elsewhere, it is good style to bind it locally.
For example, here we use a local helper function to help produce the list [1,2,...,x]:

fun countup_froml (x:int) =
let fun count (from:int, to:int) =
if from=to

then to::[]
else from :: count(from+1,to)
in
count (1,x)
end

However, we can do better. When we evaluate a call to count, we evaluate count’s body in a dynamic
environment that is the environment where count was defined, extended with bindings for count’s arguments.



The code above does not really utilize this: count’s body uses only from, to, and count (for recursion). It
could also use x, since that is in the environment when count is defined. Then we do not need to at all,
since in the code above it always has the same value as x. So this is better style:

fun countup_froml_better (x:int) =
let fun count (from:int) =
if from=x

then x::[]
else from :: count(from+1)
in
count 1
end
This technique — define a local function that uses other variables in scope — is a hugely common and

convenient thing to do in functional programming. It is a shame that many non-functional languages have
little or no support for doing something like it.

Local variables are often good style for keeping code readable. They can be much more important than that
when they bind to the results of potentially expensive computations. For example, consider this code that
does not use let-expressions:

fun bad_max (xs : int list) =
if null xs
then 0 (* note: bad style; see below *)
else if null (tl xs)
then hd xs
else if hd xs > bad_max(tl xs)
then hd xs
else bad_max(tl xs)

If you call bad_max with countup_from1 30, it will make approximately 23° (over one billion) recursive calls
to itself. The reason is an “exponential blowup” — the code calls bad_max (t1l xs) twice and each of those
calls call bad_max two more times (so four total) and so on. This sort of programming “error” can be difficult
to detect because it can depend on your test data (if the list counts down, the algorithm makes only 30
recursive calls instead of 239).

We can use let-expressions to avoid repeated computations. This version computes the max of the tail of
the list once and stores the resulting value in t1_ans.

fun good_max (xs : int list) =

if null xs

then 0 (* note: bad style; see below *)

else if null (tl xs)

then hd xs

else
(*x for style, could also use a let-binding for hd xs *)
let val tl_ans = good_max(tl xs)

in
if hd xs > tl_ans
then hd xs
else tl_ans

end



Options

The previous example does not properly handle the empty list — it returns 0. This is bad style because
0 is really not the maximum value of 0 numbers. There is no good answer, but we should deal with this
case reasonably. One possibility is to raise an exception; you can learn about ML exceptions on your own
if you are interested before we discuss them later in the course. Instead, let’s change the return type to
either return the maximum number or indicate the input list was empty so there is no maximum. Given the
constructs we have, we could “code this up” by return an int list, using [] if the input was the empty list
and a list with one integer (the maximum) if the input list was not empty.

While that works, lists are “overkill” — we will always return a list with 0 or 1 elements. So a list is not
really a precise description of what we are returning. The ML library has “options” which are a precise
description: an option value has either 0 or 1 thing: NONE is an option value “carrying nothing” whereas
SOME e evaluates e to a value v and becomes the option carrying the one value v. The type of NONE is
’a option and the type of SOME e is t option if e has type t.

Given a value, how do you use it? Just like we have null to see if a list is empty, we have isSome which
evaluates to false if its argument is NONE. Just like we have hd and tl to get parts of lists (raising an
exception for the empty list), we have valOf to get the value carried by SOME (raising an exception for NONE).

Using options, here is a better version with return type int option:

fun better_max (xs : int list) =
if null xs
then NONE
else
let val tl_ans = better_max(tl xs)
in if isSome tl_ans andalso valOf tl_ans > hd xs
then tl_ans
else SOME (hd xs)
end

The version above works just fine and is a reasonable recursive function because it does not repeat any
potentially expensive computations. But it is both awkward and a little inefficient to have each recursive
call except the last one create an option with SOME just to have its caller access the value underneath. Here
is an alternative approach where we use a local helper function for non-empty lists and then just have the
outer function return an option. Notice the helper function would raise an exception if called with [1, but
since it is defined locally, we can be sure that will never happen.

fun better_max2 (xs : int list) =
if null xs
then NONE
else let (* fine to assume argument nonempty because it is local *)
fun max_nonempty (xs : int list) =
if null (tl1 xs) (* xs must not be [] *)

then hd xs
else let val tl_ans = max_nonempty(tl xs)
in

if hd xs > tl_ans
then hd xs
else tl_ans

end
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in
SOME (max_nonempty xs)
end

Some Other Expressions and Operators

ML has all the arithmetic and logical operators you need, but the syntax is sometimes different than in most
languages. Here is a brief list of some additional forms of expressions we will find useful:

e el andalso e2 is logical-and: It evaluates e2 only if el evaluates to true. The result is true if el
and e2 evaluate to true. Naturally, el and e2 must both have type bool and the entire expression
also has type bool. In many languages, such expressions are written el && e2, but that is not the ML
syntax, nor is el and e2 (but and is a keyword we will encounter later for a different purpose). Using
el andalso e2 is generally better style than the equivalent if el then e2 else false.

e el orelse e2 is logical-or: It evaluates e2 only if el evaluates to false. The result is true if el
or e2 evaluates to true. Naturally, el and e2 must both have type bool and the entire expression
also has type bool. In many languages, such expressions are written el || e2, but that is not
the ML syntax, nor is el or e2. Using el orelse e2 is generally better style than the equivalent
if el then true else e2.

e not e is logical-negation. not is just a provided function of type bool->bool that we could have
defined ourselves as fun not x = if x then false else true. In many languages, such expressions
are written !e, but in ML the ! operator means something else (related to mutable variables, which
we will not use).

e You can compare many values, including integers, for equality using el = e2.

e Instead of writing not (el = e2) to see if two numbers are different, better style is el <> e2. In many
languages, the syntax is el !'= e2, whereas ML’s <> can be remembered as, “less than or greater than.”

e The other arithmetic comparisons have the same syntax as in most languages: >, <, >=, <=.

e Subtraction is written el - e2, but it must take two operands, so you cannot just write - e for
negation. For negation, the correct syntax is ~ e, in particular negative numbers are written like ~7,

not -7. Using ~e is better style than 0 - e, but equivalent for integers.

Lack of Mutation and Benefits Thereof

In ML, there is no way to change the contents of a binding, a tuple, or a list. If x maps to some value like the
list of pairs [(3,4),(7,9)] in some environment, then x will forever map to that list in that environment.
There is no assignment statement that changes x to map to a different list. (You can introduce a new
binding that shadows x, but that will not affect any code that looks up the “original” x in an environment.)
There is no assignment statement that lets you change the head or tail of a list. And there is no assignment
statement that lets you change the contents of a tuple. So we have constructs for building compound data
and accessing the pieces, but no constructs for mutating the data we have built.

This is a really powerful feature! That may surprise you: how can a language mot having something be
a feature? Because if there is no such feature, then when you are writing your code you can rely on no
other code doing something that would make your code wrong, incomplete, or difficult to use. Having
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immutable data is probably the most important “non-feature” a language can have, and it is one of the main
contributions of functional programming.

While there are various advantages to immutable data, here we will focus on a big one: it makes sharing
and aliasing irrelevant. Let’s re-consider two examples from above before picking on Java (and every other
language where mutable data is the norm and assignment statements run rampant).

fun sort_pair (pr : intxint) =
if (#1 pr) < (#2 pr)
then pr
else ((#2 pr), (#1 pr))

In sort_pair, we clearly build and return a new pair in the else-branch, but in the then-branch, do we
return a copy of the pair referred to by pr or do we return an alias, where a caller like:

val x = (3,4)
val y sort_pair x

would now have x and y be aliases for the same pair? The answer is you cannot tell — there is no construct
in ML that can figure out whether or not x and y are aliases, and no reason to worry that they might be.
If we had mutation, life would be different. Suppose we could say, “change the second part of the pair x is
bound to so that it holds 5 instead of 4.” Then we would have to wonder if #2 y would be 4 or 5.

In case you are curious, we would expect that the code above would create aliasing: by returning pr, the
sort_pair function would return an alias to its argument. That is more efficient than this version, which
would create another pair with exactly the same contents:

fun sort_pair (pr : intxint) =
if (#1 pr) < (#2 pr)
then (#1 pr, #2 pr)
else ((#2 pr), (#1 pr))

Making the new pair (#1 pr, #2 pr) is bad style, since pr is simpler and will do just as well. Yet in
languages with mutation, programmers make copies like this all the time, exactly to prevent aliasing where
doing an assignment using one variable like x causes unexpected changes to using another variable like y. In
ML, no users of sort_pair can ever tell whether we return a new pair or not.

Our second example is our elegant function for list append:

fun append (xs : int list, ys : int list) =
if null xs
then ys
else (hd xs) :: append(tl xs, ys)

We can ask a similar question: Does the list returned share any elements with the arguments? Again the
answer does not matter because no caller can tell. And again the answer happens to be yes: we build a new
list that “reuses” all the elements of ys. This saves space, but would be very confusing if someone could
later mutate ys. Saving space is a nice advantage of immutable data, but so is simply not having to worry
about whether things are aliased or not when writing down elegant algorithms.

In fact, t1 itself thankfully introduces aliasing (though you cannot tell): it returns (an alias to) the tail of
the list, which is always “cheap,” rather than making a copy of the tail of the list, which is “expensive” for
long lists.
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The append example is very similar to the sort_pair example, but it is even more compelling because it
is hard to keep track of potential aliasing if you have many lists of potentially large lengths. If I append
[1,2] to [3,4,5], I will get some list [1,2,3,4,5] but if later someone can change the [3,4,5] list to be
[3,7,5] is the appended list still [1,2,3,4,5] or is it now [1,2,3,7,5]7

In the analogous Java program, this is a crucial question, which is why Java programmers must obsess over
when references to old objects are used and when new objects are created. There are times when obsessing
over aliasing is the right thing to do and times when avoiding mutation is the right thing to do — functional
programming will help you get better at the latter.

For a final example, the following Java is the key idea behind an actual security hole in an important
(and subsequently fixed) Java library. Suppose we are maintaining permissions for who is allowed to access
something like a file on the disk. It is fine to let everyone see who has permission, but clearly only those
that do have permission can actually use the resource. Consider this wrong code (some parts omitted if not
relevant):

class ProtectedResource {
private Resource theResource = ...;
private String[] allowedUsers = ...;
public String[] getAllowedUsers() {
return allowedUsers;
}
public String currentUser() { ... }
public void useTheResource() {
for(int i=0; i < allowedUsers.length; i++) {
if (currentUser () .equals(allowedUsers[i])) {
. // access allowed: use it
return;
}
}

throw new IllegalAccessException();

Can you find the problem? Here it is: getAllowedUsers returns an alias to the allowedUsers array, so any
user can gain access by doing getAllowedUsers() [0] = currentUser (). Oops! This would not be possible
if we had some sort of array in Java that did not allow its contents to be updated. Instead, in Java we often
have to remember to make a copy. The correction below shows an explicit loop to show in detail what must
be done, but better style would be to use a library method like System.arraycopy or similar methods in
the Arrays class — these library methods exist because array copying is necessarily common, in part due to
mutation.

public String[] getAllowedUsers() {
String[] copy = new Stringl[allowedUsers.length];
for(int i=0; i < allowedUsers.length; i++)
copy[i] = allowedUsers[i];
return copy;
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The Pieces of a Programming Language

Now that we have learned enough ML to write some simple functions and programs with it, we can list the
essential “pieces” necessary for defining and learning any programming language:

Syntax: How do you write the various parts of the language?

e Semantics: What do the various language features mean? For example, how are expressions evaluated?

Idioms: What are the common approaches to using the language features to express computations?

Libraries: What has already been written for you? How do you do things you could not do without
library support (like access files)?



e Tools: What is available for manipulating programs in the language (compilers, read-eval-print loops,
debuggers, ...)

While libraries and tools are essential for being an effective programmer (to avoid reinventing available
solutions or unnecessarily doing things manually), this course does not focus on them much. That can leave
the wrong impression that we are using “silly” or “impractical” languages, but libraries and tools are just
less relevant in a course on the conceptual similarities and differences of programming languages.

Conceptual Ways to Build New Types

Programming languages have base types, like int, bool, and unit and compound types, which are types that
contain other types in their definition. We have already seen ways to make compound types in ML, namely
by using tuple types, list types, and option types. We will soon learn new ways to make even more flexible
compound types and to give names to our new types. To create a compound type, there are really only three
essential building blocks. Any decent programming language provides these building blocks in some way:!

e “Each-of”: A compound type t describes values that contain each of values of type t1, t2, ..., and
tn.

e “Omne-of”: A compound type t describes values that contain a value of one of the types t1, t2, ..., or
tn.

e “Self-reference”: A compound type t may refer to itself in its definition in order to describe recursive
data structures like lists and trees.

Each-of types are the most familiar to most programmers. Tuples are an example: int * bool describes
values that contain an int and a bool. A Java class with fields is also an each-of sort of thing.

One-of types are also very common but unfortunately are not emphasized as much in many introductory
programming courses. int option is a simple example: A value of this type contains an int or it does not.
For a type that contains an int or a bool in ML, we need datatype bindings, which are the main focus of
this section of the course. In object-oriented languages with classes like Java, one-of types are achieved with
subclassing, but that is a topic for much later in the course.

Self-reference allows types to describe recursive data structures. This is useful in combination with each-of
and one-of types. For example, int list describes values that either contain nothing or contain an int
and another int list. A list of integers in any programming language would be described in terms of or,
and, and self-reference because that is what it means to be a list of integers.

Naturally, since compound types can nest, we can have any nesting of each-of, one-of, and self-reference. For
example, consider the type (int * bool) list list * (int option) list * bool.

Records: Another Approach to “Each-of” Types

Record types are “each-of” types where each component is a named field. For example, the type
{foo : int, bar : int*bool, baz : bool*int} describes records with three fields named foo, bar, and

1 As a matter of jargon you do not need to know, the terms “each-of types,” “one-of types,” and “self-reference types” are not

standard — they are just good ways to think about the concepts. Usually people just use constructs from a particular language
like “tuples” when they are talking about the ideas. Programming-language researchers use the terms “product types,” “sum
types,” and “recursive types.” Why product and sum? It is related to the fact that in Boolean algebra where 0 is false and 1
is true, and works like multiply and or works like addition.



baz. This is just a new sort of type, just like tuple types were new when we learned them.

A record expression builds a record value. For example, the expression

{bar = (1+2,true andalso true), foo = 3+4, baz = (false,9) } would evaluate to the record value
{bar = (3,true), foo = 7, baz = (false,9)}, which can have type

{foo : int, bar : int*bool, baz : bool*int} because the order of fields never matters (we use the
field names instead). In general the syntax for a record expression is {f1 = el, ..., fn = en} where, as
always, each ei can be any expression. Here each f can be any field name (though each must be different).
A field name is basically any sequence of letters or numbers.

In ML, we do not have to declare that we want a record type with particular field names and field types —
we just write down a record expression and the type-checker gives it the right type. The type-checking rules
for record expressions are not surprising: Type-check each expression to get some type ti and then build
the record type that has all the right fields with the right types. Because the order of field names never
matters, the REPL always alphabetizes them when printing just for consistency.

The evaluation rules for record expressions are analogous: Evaluate each expression to a value and create
the corresponding record value.

Now that we know how to build record values, we need a way to access their pieces. For now, we will use
#foo e where foo is a field name. Type-checking requires e has a record type with a field named foo, and
if this field has type t, then that is the type of #foo e. Evaluation evaluates e to a record value and then
produces the contents of the foo field.

By Name vs. By Position, Syntactic Sugar, and The Truth About
Tuples

Records and tuples are very similar. They are both “each-of” constructs that allow any number of com-
ponents. The only real difference is that records are “by name” and tuples are “by position.” This means
with records we build them and access their pieces by using field names, so the order we write the fields in a
record expression does not matter. But tuples do not have field names, so we use the position (first, second,
third, ...) to distinguish the components.

By name versus by position is a classic decision when designing a language construct or choosing which one
to use, with each being more convenient in certain situations. As a rough guide, by position is simpler for
a small number of components, but for larger compound types it becomes too difficult to remember which
position is which.

Java method arguments (and ML function arguments as we have described them so far) actually take a
hybrid approach: The method body uses variable names to refer to the different arguments, but the caller
passes arguments by position. There are other languages where callers pass arguments by name.?

Despite “by name vs. by position,” records and tuples are still so similar that we can define tuples entirely
in terms of records. Here is how:

e When you write (el,...,en), it is another way of writing {1=el, ... ,n=en}, i.e., a tuple expression
is a record expression with field names 1, 2, ..., n.
e The type t1 * ... * tnis just another way of writing {1:t1, ..., n:tn}.

e Notice that #1 e, #2 e, etc. now already mean the right thing: get the contents of the field named 1,
2, etc.

2The phrase “call by name” actually means something else in relation to function arguments. It is a different topic.



In fact, this is how ML actually defines tuples: A tuple is a record. That is, all the syntax for tuples is just a
convenient way to write down and use records. The REPL just always uses the tuple syntax where possible,
so if you evaluate {2=1+2, 1=3+4} it will print the result as (7,3). Using the tuple syntazx is better style,
but we did not need to give tuples their own semantics: we can instead use the “another way of writing”
rules above and then reuse the semantics for records.

This is the first of many examples we will see of syntactic sugar. We say, “tuples are just syntactic sugar
for records with fields named 1, 2, ..., n.” It is syntactic because we can describe everything about tuples
in terms of equivalent record syntax. It is sugar because it makes the language sweeter. The term syntactic
sugar is widely used. Syntactic sugar is a great way to keep the key ideas in a programming-language
small (making it easier to implement) while giving programmers convenient ways to write things. Indeed, in
Homework 1 we used tuples without knowing records existed even though tuples are records.

Datatype Bindings: Our Own “One-of” Types

We now introduce datatype bindings, our third kind of binding after variable bindings and function bindings.
We start with a silly but simple example because it will help us see the many different aspects of a datatype
binding. We can write:

datatype mytype = Twolnts of int * int
| Str of string
I

Pizza

Roughly, this defines a new type where values have an int * int or a string or nothing. Any value
will also be “tagged” with information that lets us know which wvariant it is: These “tags,” which we will
call constructors, are Twolnts, Str, and Pizza. Two constructors could be used to tag the same type of
underlying data; in fact this is common even though our example uses different types for each variant.

More precisely, the example above adds four things to the environment:

e A new type mytype that we can now use just like any other type

e Three constructors TwoInts, Str, and Pizza

A constructor is two different things. First, it is either a function for creating values of the new type (if
the variant has of t for some type t) or it is actually a value of the new type (otherwise). In our example,
TwolInts is a function of type int*int -> mytype, Str is a function of type string->mytype, and Pizza is
a value of type mytype. Second, we use constructors in case-expressions as described further below.

So we know how to build values of type mytype: call the constructors (they are functions) with expressions
of the right types (or just use the Pizza value). The result of these function calls are values that “know
which variant they are” (they store a “tag”) and have the underlying data passed to the constructor. The
REPL represents these values like TwoInts(3,4) or Str "hi".

What remains is a way to retrieve the pieces...

How ML Does Not Provide Access to Datatype Values

Given a value of type mytype, how can we access the data stored in it? First, we need to find out which
variant it is since a value of type mytype might have been made from TwoInts, Str, or Pizza and this



affects what data is available. Once we know what variant we have, then we can access the pieces, if any,
that variant carries.

Recall how we have done this so for lists and options, which are also one-of types: We had functions for
testing which variant we had (null or isSome) and functions for getting the pieces (hd, t1, or valOf), which
raised exceptions if given arguments of the wrong variant.

ML could have taken the same approach for datatype bindings. For example, it could have taken our
datatype definition above and added to the environment functions isTwoInts, isStr, and isPizza all of
type mytype -> bool. And it could have added functions like getTwoInts of type mytype -> int*int and
getStr of type mytype -> string, which might raise exceptions.

But ML does not take this approach. Instead it does something better. You could write these functions
yourself using the better thing, though it is usually poor style to do so. In fact, after learning the better
thing, we will no longer use the functions for lists and options the way we have been — we just started with
these functions so we could learn one thing at a time.

How ML Provides Access to Datatype Values: Case Expressions

The better thing is a case expression. Here is a basic example for our example datatype binding:

fun f x = (* f has type mytype -> int *)
case x of
Pizza => 3
| TwoInts(il,i2) => il + i2
| Str s => String.size s

In one sense, a case-expression is like a more powerful if-then-else expression: Like a conditional expression,
it evaluates two of its subexpressions: first the expression between the case and of keywords and second the
expression in the first branch that matches. But instead of having two branches (one for true and one for
false), we can have one branch for each variant of our datatype (and we will generalize this further below).
Like conditional expressions, each branch’s expression must have the same type (int in the example above)
because the type-checker cannot know what branch will be used.

Each branch has the form p => e where p is a pattern and e is an expression, and we separate the branches
with the | character. Patterns look like expressions, but do not think of them as expressions. Instead they
are used to match against the result of evaluating the case’s first expression (the part after case). This is
why evaluating a case-expression is called pattern-matching.

For now (to be significantly generalized soon), we keep pattern-matching simple: Each pattern uses a different
constructor and pattern-matching picks the branch with the “right one” given the expression after the word
case. The result of evaluating that branch is the overall answer; no other branches are evaluated. For
example, if TwoInts(7,9) is passed to f, then the second branch will be chosen.

That takes care of the “check the variant” part of using the one-of type, but pattern matching also takes
care of the “get out the underlying data” part. Since TwoInts has two values it “carries”, a pattern for it can
(and, for now, must) use two variables (the (i1,i2)). As part of matching, the corresponding parts of the
value (continuing our example, the 7 and the 9) are bound to i1 and i2 in the environment used to evaluate
the corresponding right-hand side (the i1+i2). In this sense, pattern-matching is like a let-expression: It
binds variables in a local scope. The type-checker knows what types these variables have because they were
specified in the datatype binding that created the constructor used in the pattern.

Why are case-expressions better than functions for testing variants and extracting pieces?



e We can never “mess up” and try to extract something from the wrong variant. That is, we will not
get exceptions like we get with hd [].

e If a case expression forgets a variant, then the type-checker will give a warning message. This indicates
that evaluating the case-expression could find no matching branch, in which case it will raise an
exception. If you have no such warnings, then you know this does not occur.

e If a case expression uses a variant twice, then the type-checker will give an error message since one of
the branches could never possibly be used.

e If you still want functions like null and hd, you can easily write them yourself (but do not do so for
your homework).

e Pattern-matching is much more general and powerful than we have indicated so far. We give the
“whole truth” about pattern-matching below.

Useful Examples of “One-of” Types

Let us now consider several examples where “one-of” types are useful, since so far we considered only a silly
example.

First, they are good for enumerating a fixed set of options — and much better style than using, say, small
integers. For example:

datatype suit = Club | Diamond | Heart | Spade

Many languages have support for this sort of enumeration including Java and C, but ML takes the next step
of letting variants carry data, so we can do things like this:

datatype rank = Jack | Queen | King | Ace | Num of int

We can then combine the two pieces with an each-of type: suit * rank

One-of types are also useful when you have different data in different situations. For example, suppose you
want to identify students by their id-numbers, but in case there are students that do not have one (perhaps
they are new to the university), then you will use their full name instead (with first name, optional middle
name, and last name). This datatype binding captures the idea directly:

datatype id = StudentNum of int
| Name of string * (string option) * string

Unfortunately, this sort of example is one where programmers often show a profound lack of understanding
of one-of types and insist on using each-of types, which is like using a saw as a hammer (it works, but you
are doing the wrong thing). Consider BAD code like this:

(* If student_num is -1, then use the other fields, otherwise ignore other fields )
{student_num : int, first : string, middle : string option, last : string}

This approach requires all the code to follow the rules in the comment, with no help from the type-checker.
It also wastes space, having fields in every record that should not be used.

On the other hand, each-of types are exactly the right approach if we want to store for each student their
id-number (if they have one) and their full name:



{ student_num : int option,

first : string,
middle : string option,
last : string }

Our last example is a data definition for arithmetic expressions containing constants, negations, additions,
and multiplications.

Constant of int
Negate of exp

Add of exp * exp
Multiply of exp * exp

datatype exp =
|
I
|

Thanks to the self-reference, what this data definition really describes is trees where the leaves are integers
and the internal nodes are either negations with one child, additions with two children or multiplications
with two children. We can write a function that takes an exp and evaluates it:

fun eval e =
case e of
Constant i => i
| Negate e2 => ~ (eval e2)
| Add(el,e2) => (eval el) + (eval e2)
| Multiply(el,e2) => (eval el) * (eval e2)

So this function call evaluates to 15:
eval (Add (Constant 19, Negate (Constant 4)))

Notice how constructors are just functions that we call with other expressions (often other values built from
constructors).

There are many functions we might write over values of type exp and most of them will use pattern-matching
and recursion in a similar way. Here are other functions you could write that process an exp argument:

The largest constant in an expression
e A list of all the constants in an expression (use list append)

A bool indicating whether there is at least one multiplication in the expression

The number of addition expressions in an expression
Here is the last one:

fun number_of_adds e =

case e of
Constant i => 0
| Negate e2 => number_of_adds e2
| Add(el,e2) => 1 + number_of_adds el + number_of_adds e2

| Multiply(el,e2) => number_of_adds el + number_of_adds e2



Datatype Bindings and Case Expressions So Far, Precisely

We can summarize what we know about datatypes and pattern matching so far as follows: The binding
datatype t = C1 of t1 | C2 of t2 | ... | Cn of tn

introduces a new type t and each constructor Ci is a function of type ti->t. One omits the “of ti” for a
variant that “carries nothing” and such a constructor just has type t. To “get at the pieces” of a t we use
a case expression:

case e of pl => el | p2=>e2 | ... | pn => en

A case expression evaluates e to a value v, finds the first pattern pi that matches v, and evaluates ei to
produce the result for the whole case expression. So far, patterns have looked like Ci(x1,...,xn) where Ci
is a constructor of type t1 * ... * tn -> t (or just Ci if Ci carries nothing). Such a pattern matches a
value of the form Ci(v1,...,vn) and binds each xi to vi for evaluating the corresponding ei.

Type Synonyms

Before continuing our discussion of datatypes, let’s contrast them with another useful kind of binding that
also introduces a new type name. A type synonym simply creates another name for an existing type that is
entirely interchangeable with the existing type.

For example, if we write:
type foo = int

then we can write foo wherever we write int and vice-versa. So given a function of type foo->foo we could
call the function with 3 and add the result to 4. The REPL will sometimes print foo and sometimes print
int depending on the situation; the details are unimportant and up to the language implementation. For a
type like int, such a synonym is not very useful (though later when we study ML’s module system we will
build on this feature).

But for more complicated types, it can be convenient to create type synonyms. Here are some examples for
types we created above:

type card = suit * rank

type name_record = { student_num : int option,

first : string,
middle : string option,
last : string }

Just remember these synonyms are fully interchangeable. For example, if a homework question requires a
function of type card -> int and the REPL reports your solution has type suit * rank -> int, this is
okay because the types are “the same.”

In contrast, datatype bindings introduce a type that is not the same as any existing type. It creates
constructors that produces values of this new type. So, for example, the only type that is the same as suit
is suit unless we later introduce a synonym for it.



Lists and Options are Datatypes

Because datatype definitions can be recursive, we can use them to create our own types for lists. For example,
this binding works well for a linked list of integers:

datatype my_int_list = Empty
| Cons of int * my_int_list

We can use the constructors Empty and Cons to make values of my_int_list and we can use case expressions
to use such values:3

val one_two_three = Cons(1,Cons(2,Cons(3,Empty)))

fun append_mylist (xs,ys) =
case xs of
Empty => ys
| Cons(x,xs’) => Cons(x, append_mylist(xs’,ys))

It turns out the lists and options “built in” (i.e., predefined with some special syntactic support) are just
datatypes. As a matter of style, it is better to use the built-in widely-known feature than to invent your
own.

More importantly, it is better style to use pattern-matching for accessing list and option values, not the
functions null, hd, t1, isSome, and valOf we saw previously. (We used them because we had not learned
pattern-matching yet and we did not want to delay practicing our functional-programming skills.)

For options, all you need to know is SOME and NONE are constructors, which we use to create values (just like
before) and in patterns to access the values. Here is a short example of the latter:

fun inc_or_zero intoption =
case intoption of
NONE => 0
| SOME i => i+1

The story for lists is similar with a few convenient syntactic peculiarities: [] really is a constructor that
carries nothing and : : really is a constructor that carries two things, but :: is unusual because it is an infix
operator (it is placed between its two operands), both when creating things and in patterns:

fun sum_list xs =
case xs of
=0
| x::x8’ => x + sum_list xs’

fun append (xs,ys) =
case xs of
[0 =>ys
| x::xs8’ => x :: append(xs’,ys)

3In this example, we use a variable xs’. Many languages do not allow the character ’ in variable names, but ML does and
it is common in mathematics to use it and pronounce such a variable “exes prime.”



Notice here x and xs’ are nothing but local variables introduced via pattern-matching. We can use any
names for the variables we want. We could even use hd and t1 — doing so would simply shadow the functions
predefined in the outer environment.

The reasons why you should usually prefer pattern-matching for accessing lists and options instead of func-
tions like null and hd is the same as for datatype bindings in general: you cannot forget cases, you cannot
apply the wrong function, etc. So why does the ML environment predefine these functions if the approach
is inferior? In part, because they are useful for passing as arguments to other functions, a major topic for
the next section of the course.

Polymorphic Datatypes

Other than the strange syntax of [] and ::, the only thing that distinguishes the built-in lists and options
from our example datatype bindings is that the built-in ones are polymorphic — they can be used for carrying
values of any type, as we have seen with int list, int list list, (bool * int) list, etc. You can do
this for your own datatype bindings too, and indeed it is very useful for building “generic” data structures.
While we will not focus on using this feature here (i.e., you are not responsible for knowing how to do it),
there is nothing very complicated about it. For example, this is ezactly how options are pre-defined in the
environment:

datatype ’a option = NONE | SOME of ’a

Such a binding does not introduce a type option. Rather, it makes it so that if t is a type, then t option
is type. You can also define polymorphic datatypes that take multiple types. For example, here is a binary
tree where internal nodes hold values of type ’a and leaves hold values of type ’b

datatype (’a,’b) tree = Node of ’a * (’a,’b) tree * (’a,’b) tree
| Leaf of ’b

We then have types like (int,int) tree (in which every node and leaf holds an int) and (string,bool) tree
(in which every node holds a string and every leaf holds a bool). The way you use constructors and pattern-
matching is the same for regular datatypes and polymorphic datatypes.

Pattern-Matching for Each-Of Types: The Truth About Val-Bindings

So far we have used pattern-matching for one-of types, but we can use it for each-of types also. Given a record
value {f1=v1,...,fn=vn}, the pattern {f1=x1,...,fn=xn} matches and binds xi to vi. As you might
expect, the order of fields in the pattern does not matter. As before, tuples are syntactic sugar for records:
the pattern (x1,...,xn) is the same as {1=x1, ... ,n=xn} and matches the tuple value (v1,...,vn), which
is the same as {1=v1,...,n=vn}. So we could write this function for summing the three parts of an
int * int * int:

fun sum_triple (triple : int * int * int) =
case triple of
(x,y,2) =>z +y + x

And a similar example with records (and ML’s string-concatenation operator) could look like this:
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fun full_name (r : {first:string,middle:string,last:string}) =
case r of
{first=x,middle=y,last=z} =>x ~ " " ~y ~ " " "z

However, a case-expression with one branch is poor style — it looks strange because the purpose of such
expressions is to distinguish cases, plural. So how should we use pattern-matching for each-of types, when
we know that a single pattern will definitely match so we are using pattern-matching just for the convenient
extraction of values? It turns out you can use patterns in val-bindings too! So this approach is better style:

fun full_name (r : {first:string,middle:string,last:string}) =
let val {first=x,middle=y,last=z} = r
in
X ~ n.n -~ y ~ n.n "z
end
fun sum_triple (triple : int*int*int) =
let val (x,y,z) = triple
in
X+y+z
end

Actually we can do even better: Just like a pattern can be used in a val-binding to bind variables (e.g., x, y,
and z) to the various pieces of the expression (e.g., triple), we can use a pattern when defining a function
binding and the pattern will be used to introduce bindings by matching against the value passed when the
function is called. So here is the third and best approach for our example functions:

fun full _name {first=x,middle=y,last=z} =
X -~ n n -~ -y Z

fun sum_triple (x,y,z) =
X+y+z

This version of sum_triple should intrigue you: It takes a triple as an argument and uses pattern-matching
to bind three variables to the three pieces for use in the function body. But it looks exactly like a function
that takes three arguments of type int. Indeed, is the type int*int*int->int for three-argument functions
or for one argument functions that take triples?

It turns out we have been basically lying: There is no such thing as a multi-argument function in ML:
Every function in ML takes exactly one argument! Every time we write a multi-argument function,
we are really writing a one-argument function that takes a tuple as an argument and uses pattern-matching
to extract the pieces. This is such a common idiom that it is easy to forget about and it is totally fine to
talk about “multi-argument functions” when discussing your ML code with friends. But in terms of the
actual language definition, it really is a one-argument function: syntactic sugar for expanding out to the
first version of sum_triple with a one-arm case expression.

This flexibility is sometimes useful. In languages like C and Java, you cannot have one function/method
compute the results that are immediately passed to another multi-argument function/method. But with
one-argument functions that are tuples, this works fine. Here is a silly example where we “rotate a triple to
the right” by “rotating it to the left twice”:

fun rotate_left (x,y,z) = (y,z,x)
fun rotate_right triple = rotate_left(rotate_left triple)

More generally, you can compute tuples and then pass them to functions even if the writer of that function
was thinking in terms of multiple arguments.
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What about zero-argument functions? They do not exist either. The binding fun f () = e is using the
unit-pattern () to match against calls that pass the unit value (), which is the only value of type unit.
The type unit is just a datatype with only one constructor, which takes no arguments and uses the unusual
syntax (). Basically, datatype unit = () comes pre-defined.

Digression: Type inference

By using patterns to access values of tuples and records rather than #foo, you will find it is no longer
necessary to write types on your function arguments. In fact, it is conventional in ML to leave them off
— you can always use the REPL to find out a function’s type. The reason we needed them before is that
#foo does not give enough information to type-check the function because the type-checker does not know
what other fields the record is supposed to have, but the record/tuple patterns introduced above provide
this information. In ML, every variable and function has a type (or your program fails to type-check) —
type inference only means you do not need to write down the type.

So none of our examples above that used pattern-matching instead of #middle or #2 need argument types.
It is often better style to write these less cluttered versions, where again the last one is the best:

fun sum_triple triple =

case triple of

(x,y,2) =>z +y +x

fun sum_triple triple =

let val (x,y,z) = triple

in

X+y+z

end
fun sum_triple (x,y,z) =

X+y+z

This version needs an explicit type on the argument:

fun sum_triple (triple : int * int * int) =
#1 triple + #2 triple + #3 triple

The reason is the type-checker cannot take

fun sum_triple triple =
#1 triple + #2 triple + #3 triple

and infer that the argument must have type int*int*int, since it could also have type int*int*int*int
or int*int*int*string or int*int*int*bool*string or an infinite number of other types. If you do not
use #, ML almost never requires explicit type annotations thanks to the convenience of type inference.

In fact, type inference sometimes reveals that functions are more general than you might have thought.
Consider this code, which does use part of a tuple/record:

fun partial_sum (x,y,z) = x + z
fun partial_name {first=x, middle=y, last=z} =x ~ " " "~ z

In both cases, the inferred function types reveal that the type of y can be any type, so we can call
partial_sum (3,4,5) or partial_sum (3,false,5).
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We will discuss these polymorphic functions as well as how type inference works in future sections because
they are major course topics in their own right. For now, just stop using #, stop writing argument types,
and do not be confused if you see the occasional type like >a or ’b due to type inference, as discussed a bit
more next...

Digression: Polymorphic Types and Equality Types

We now encourage you to leave explicit type annotations out of your program, but as seen above that can
lead to surprisingly general types. Suppose you are asked to write a function of type int*int*int -> int
that behaves like partial_sum above, but the REPL indicates, correctly, that partial_sum has type
int*’axint->int. This is okay because the polymorphism indicates that partial_sum has a more gen-
eral type. If you can take a type containing ’a, ’b, ’c, etc. and replace each of these type wvariables
consistently to get the type you “want,” then you have a more general type than the one you want.

As another example, append as we have written it has type ’a 1list * ’a list -> ’a list, so by consis-
tently replacing ’a with string, we can use append as though it has the type string list * string list
-> string list. We can do this with any type, not just string. And we do not actually do any-
thing: this is just a mental exercise to check that a type is more general than the one we need. Note
that type variables like >a must be replaced consistently, meaning the type of append is not more general
than string list * int list -> string list.

You may also see type variables with two leading apostrophes, like ’>a. These are called equality types and
they are a fairly strange feature of ML not relevant to our current studies. Basically, the = operator in ML
(for comparing things) works for many types, not just int, but its two operands must have the same type.
For example, it works for string as well as tuple types for which all types in the tuple support equality (e.g.,
int * (string * bool). But it does not work for every type.* A type like ’’a can only have an “equality
type” substituted for it.

fun same_thing(x,y) = if x=y then "yes" else "no" (* has type ’’a * ’’a -> string *)
fun is_three x = if x=3 then "yes" else "no" (* has type int -> string *)

Again, we will discuss polymorphic types and type inference more later, but this digression is helpful for
avoiding confusion on Homework 2: if you write a function that the REPL gives a more general type to than
you need, that is okay. Also remember, as discussed above, that it is also okay if the REPL uses different
type synonyms than you expect.

Nested Patterns

It turns out the definition of patterns is recursive: anywhere we have been putting a variable in our patterns,
we can instead put another pattern. Roughly speaking, the semantics of pattern-matching is that the value
being matched must have the same “shape” as the pattern and variables are bound to the “right pieces.”
(This is very hand-wavy explanation which is why a precise definition is described below.) For example,
the pattern a:: (b::(c::d)) would match any list with at least 3 elements and it would bind a to the first
element, b to the second, c to the third, and 4 to the list holding all the other elements (if any). The pattern
a::(b::(c::[1)) on the other hand, would match only lists with exactly three elements. Another nested
patterns is (a,b,c)::d, which matches any non-empty list of triples, binding a to the first component of

41t does not work for functions since it is impossible to tell if two functions always do the same thing. It also does not
work for type real to enforce the rule that, due to rounding of floating-point values, comparing them is almost always wrong
algorithmically.

13



the head, b to the second component of the head, ¢ to the third component of the head, and d to the tail of
the list.

In general, pattern-matching is about taking a value and a pattern and (1) deciding if the pattern matches
the value and (2) if so, binding variables to the right parts of the value. Here are some key parts to the
elegant recursive definition of pattern matching:

e A variable pattern (x) matches any value v and introduces one binding (from x to v).
e The pattern C matches the value C, if C is a constructor that carries no data.

e The pattern C p where C is a constructor and p is a pattern matches a value of the form C v (notice
the constructors are the same) if p matches v (i.e., the nested pattern matches the carried value). It
introduces the bindings that p matching v introduces.

e The pattern (p1,p2,...,pn) matches a tuple value (v1,v2,...,vn) if p1 matches v1 and p2 matches
v2, ..., and pn matches vn. It introduces all the bindings that the recursive matches introduce.

e (A similar case for record patterns of the form {f1=p1,...,fn=pn} ...)

This recursive definition extends our previous understanding in two interesting ways. First, for a constructor
C that carries multiple arguments, we do not have to write patterns like C(x1,...,xn) though we often
do. We could also write C x; this would bind x to the tuple that the value C(v1,...,vn) carries. What is
really going on is that all constructors take 0 or 1 arguments, but the 1 argument can itself be a tuple. So
C(x1,...,xn) is really a nested pattern where the (x1,...,xn) part is just a pattern that matches all tuples
with n parts. Second, and more importantly, we can use nested patterns instead of nested case expressions
when we want to match only values that have a certain “shape.”

There are additional kinds of patterns as well. Sometimes we do not need to bind a variable to part of a
value. For example, consider this function for computing a list’s length:

fun len xs =
case xs of
1=>0
| x::xs8” => 1 + len xs’

We do not use the variable x. In such cases, it is better style not to introduce a variable. Instead, the wildcard
pattern _ matches everything (just like a variable pattern matches everything), but does not introduce a
binding. So we should write:

fun len xs =
case xs of
=0
| _::xs’ => 1 + len xs’
In terms of our general definition, wildcard patterns are straightforward:

e A wildcard pattern (_) matches any value v and introduces no bindings.

Lastly, you can use integer constants in patterns. For example, the pattern 37 matches the value 37 and
introduces no bindings.
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Useful Examples of Nested Patterns

An elegant example of using nested patterns rather than an ugly mess of nested case-expressions is “zipping”
or “unzipping” lists (three of them in this example):®

exception BadTriple

fun zip3 list_triple =
case list_triple of
(0,0, = 0
| (hd1l::t11,hd2::t12,hd3::t13) => (hdl,hd2,hd3)::2zip3(t1l1,t12,t13)
| _ => raise BadTriple

fun unzip3 1lst =
case lst of
[0 => (011,00,
| (a,b,c)::tl => let val (11,12,13) = unzip3 tl
in
(a::11,b::12,c::13)
end

This example checks that a list of integers is sorted:

fun nondecreasing intlist =
case intlist of
[J => true
| _::[1 => true
| head::(neck::rest) => (head <= neck andalso nondecreasing (neck::rest))

It is also sometimes elegant to compare two values by matching against a pair of them. This example, for
determining the sign that a multiplication would have without performing the multiplication, is a bit silly
but demonstrates the idea:

datatype sgn =P | N | Z

fun multsign (x1,x2) =
let fun sign x = if x=0 then Z else if x>0 then P else N

in
case (sign x1,sign x2) of
(z,.) =>1Z

| (2,2) => Z

| (P,P) =>P

| (N,N) =>P

| _ => N (* many say bad style; I am okay with it *)
end

The style of this last case deserves discussion: When you include a “catch-all” case at the bottom like this,
you are giving up any checking that you did not forget any cases: after all, it matches anything the earlier
cases did not, so the type-checker will certainly not think you forgot any cases. So you need to be extra

5Exceptions are discussed below but are not the important part of this example.
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careful if using this sort of technique and it is probably less error-prone to enumerate the remaining cases
(in this case (N,P) and (P,N)). That the type-checker will then still determine that no cases are missing is
useful and non-trivial since it has to reason about the use (Z,_) and (_,Z) to figure out that there are no
missing possibilities of type sgn * sgn.

Optional: Multiple Cases in a Function Binding

So far, we have seen pattern-matching on one-of types in case expressions. We also have seen the good
style of pattern-matching each-of types in val or function bindings and that this is what a “multi-argument
function” really is. But is there a way to match against one-of types in val/function bindings? This seems
like a bad idea since we need multiple possibilities. But it turns out ML has special syntax for doing this in
function definitions. Here are two examples, one for our own datatype and one for lists:

datatype exp = Constant of int | Negate of exp | Add of exp * exp | Multiply of exp * exp

fun eval (Constant i) = i
| eval (Negate e2) = ~ (eval e2)
| eval (Add(el,e2)) = (eval el) + (eval e2)
| eval (Multiply(el,e2)) = (eval el) * (eval e2)

fun append ([],ys) = ys
| append (x::xs’,ys) = x :: append(xs’,ys)

As a matter of taste, your instructor has never liked this style very much, and you have to get parentheses
in the right places. But it is common among ML programmers, so you are welcome to as well. As a matter
of semantics, it is just syntactic sugar for a single function body that is a case expression:

fun eval e =
case e of
Constant i => i
| Negate e2 => ~ (eval e2)
| Add(el,e2) => (eval el) + (eval e2)
| Multiply(el,e2) => (eval el) * (eval e2)

fun append e =

case e of
([1,ys) => ys
| (x::xs’,ys) => x :: append(xs’,ys)

In general, the syntax

el
e2

fun f pl
| £ p2

| f pn = en

is just syntactic sugar for:%

6 As a technicality, x must be some variable not already defined in the outer environment and used by one of the expressions
in the function.

16



fun f x

case x of
pl => el

| p2 => e2

| pn => en

Notice the append example uses nested patterns: each branch matches a pair of lists, by putting patterns
(e.g., [1 or x::xs’) inside other patterns.

Exceptions

ML has a built-in notion of exception. You can raise (also known as throw) an exception with the raise
primitive. For example, the hd function in the standard library raises the List.Empty exception when called
with []:

fun hd xs =
case xs of
[1 => raise List.Empty
| x::_ =>x

You can create your own kinds of exceptions with an exception binding. Exceptions can optionally carry
values with them, which let the code raising the exception provide more information:

exception MyUndesirableCondition
exception MyOtherException of int * int

Kinds of exceptions are a lot like constructors of a datatype binding. Indeed, they are functions (if they
carry values) or values (if they don’t) that create values of type exn rather than the type of a datatype.
So Empty, MyUndesirableCondition, and MyOtherException(3,9) are all values of type exn, whereas
MyOtherException has type int*int->exn.

Usually we just use exception constructors as arguments to raise, such as raise MyOtherException(3,9),
but we can use them more generally to create values of type exn. For example, here is a version of a function
that returns the maximum element in a list of integers. Rather than return an option or raise a particular
exception like List.Empty if called with [], it takes an argument of type exn and raises it. So the caller can
pass in the exception of its choice. (The type-checker can infer that ex must have type exn because that is
the type raise expects for its argument.)

fun maxlist (xs,ex) =
case xs of
[1 => raise ex
[ x::[1 =>x
| x::xs’ => Int.max(x,maxlist(xs’,ex))

Notice that calling max1ist([3,4,0],List.Empty) would not raise an exception; this call passes an excep-
tion value to the function, which the function then does not raise.

The other feature related to exceptions is handling (also known as catching) them. For this, ML has handle-
expressions, which look like el handle p => e2 where el and e2 are expressions and p is a pattern that
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matches an exception. The semantics is to evaluate el and have the result be the answer. But if an exception
matching p is raised by el, then e2 is evaluated and that is the answer for the whole expression. If el raises
an exception that does not match p, then the entire handle-expression also raises that exception. Similarly,
if e2 raises an exception, then the whole expression also raises an exception.

As with case-expressions, handle-expression can also have multiple branches each with a pattern and expres-
sion, syntactically separated by |.

Tail Recursion and Accumulators

This topic involves new programming idioms, but no new language constructs. It defines tail recursion,
describes how it relates to writing efficient recursive functions in functional languages like ML, and presents
how to use accumulators as a technique to make some functions tail recursive.

To understand tail recursion and accumulators, consider these functions for summing the elements of a list:

fun suml xs =
case xs of
[1 =0
| i::x8’ => i + suml xs’

fun sum2 xs =
let fun f (xs,acc) =
case xs of
[1 => acc
| i::xs’ => f(xs’,i+acc)
in
f(xs,0)

end

Both functions compute the same results, but sum2 is more complicated, using a local helper function that
takes an extra argument, called acc for “accumulator.” In the base case of £ we return acc and the value
passed for the outermost call is 0, the same value used in the base case of sum1. This pattern is common: The
base case in the non-accumulator style becomes the initial accumulator and the base case in the accumulator
style just returns the accumulator.

Why might sum2 be preferred when it is clearly more complicated? To answer, we need to understand a
little bit about how function calls are implemented. Conceptually, there is a call stack, which is a stack (the
data structure with push and pop operations) with one element for each function call that has been started
but has not yet completed. Each element stores things like the value of local variables and what part of the
function has not been evaluated yet. When the evaluation of one function body calls another function, a
new element is pushed on the call stack and it is popped off when the called function completes.

So for sum1, there will be one call-stack element (sometimes just called a “stack frame”) for each recursive
call to sumi, i.e., the stack will be as big as the list. This is necessary because after each stack frame is
popped off the caller has to, “do the rest of the body” — namely add i to the recursive result and return.

Given the description so far, sum?2 is no better: sum2 makes a call to £ which then makes one recursive call for
each list element. However, when £ makes a recursive call to £, there is nothing more for the caller to do after
the callee returns except return the callee’s result. This situation is called a tail call (let’s not try to figure
out why it’s called this) and functional languages like ML typically promise an essential optimization: When
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a call is a tail call, the caller’s stack-frame is popped before the call — the callee’s stack-frame just replaces
the caller’s. This makes sense: the caller was just going to return the callee’s result anyway. Therefore, calls
to sum2 never use more than 1 stack frame.

Why do implementations of functional languages include this optimization? By doing so, recursion can
sometimes be as efficient as a while-loop, which also does not make the call-stack bigger. The “sometimes”
is exactly when calls are tail calls, something you the programmer can reason about since you can look at
the code and identify which calls are tail calls.

Tail calls do not need to be to the same function (f can call g), so they are more flexible than while-loops that
always have to “call” the same loop. Using an accumulator is a common way to turn a recursive function
into a “tail-recursive function” (one where all recursive calls are tail calls), but not always. For example,
functions that process trees (instead of lists) typically have call stacks that grow as big as the depth of a
tree, but that’s true in any language: while-loops are not very useful for processing trees.

More Examples of Tail Recursion

Tail recursion is common for functions that process lists, but the concept is more general. For example, here
are two implementations of the factorial function where the second one uses a tail-recursive helper function
so that it needs only a small constant amount of call-stack space:

fun factl n if n=0 then 1 else n * factl(n-1)

fun fact2 n
let fun aux(n,acc) = if n=0 then acc else aux(n-1,acc*n)
in

aux(n,1)
end

It is worth noticing that factl 4 and fact2 4 produce the same answer even though the former performs
4% (3% (2% (1%1))) and the latter performs (((1%4)+3)*2)x 1. We are relying on the fact that multiplication
is associative (ax*(bxc) = (a*b)*c) and that multiplying by 1 is the identity function (1xx = z*x1 = z). The
earlier sum example made analogous assumptions about addition. In general, converting a non-tail-recursive
function to a tail-recursive function usually needs associativity, but many functions are associative.

A more interesting example is this inefficient function for reversing a list:

fun revl 1lst =
case lst of
=1

| x::xs => (revl xs) @ [x]

We can recognize immediately that it is not tail-recursive since after the recursive call it remains to append
the result onto the one-element list that holds the head of the list. Although this is the most natural way
to reverse a list recursively, the inefficiency is caused by more than creating a call-stack of depth equal to
the argument’s length, which we will call n. The worse problem is that the total amount of work performed
is proportional to n?, i.e., this is a quadratic algorithm. The reason is that appending two lists takes time
proportional to the length of the first list: it has to traverse the first list — see our own implementations of
append discussed previously. Over all the recursive calls to revl, we call @ with first arguments of length
n—1,n—2,..,1 and the sum of the integers from 1 ton —lisnx (n —1)/2.
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As you learn in a data structures and algorithms course, quadratic algorithms like this are much slower than
linear algorithms for large enough n. That said, if you expect n to always be small, it may be be worth
valuing the programmer’s time and sticking with a simple recursive algorithm. Else, fortunately, using the
accumulator idiom leads to an almost-as-simple linear algorithm.

fun rev2 lst =
let fun aux(lst,acc) =
case lst of
[1 => acc
| x::xs => aux(xs, xX::acc)
in
aux(1lst,[])
end

The key differences are (1) tail recursion and (2) we do only a constant amount of work for each recursive
call because :: does not have to traverse either of its arguments.

A Precise Definition of Tail Position

While most people rely on intuition for, “which calls are tail calls,” we can be more precise by defining tail
position recursively and saying a call is a tail call if it is in tail position. The definition has one part for each
kind of expression; here are several parts:

e In fun f(x) = e, e is in tail position.

e If an expression is not in tail position, then none of its subexpressions are in tail position.

If if el then e2 else e3is in tail position, then e2 and e3 are in tail position (but not e1). (Case-
expressions are similar.)

e If let b1 ... bn in e end is in tail position, then e is in tail position (but no expressions in the
bindings are).

Function-call arguments are not in tail position.
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Introduction and Some Terms

This unit focuses on first-class functions and function closures. By “first-class” we mean that functions can
be computed, passed, stored, etc. wherever other values can be computed, passed, stored, etc. As examples,
we can pass them to functions, return them from functions, put them in pairs, have them be part of the data
a datatype constructor carries, etc. “Function closures” refers to functions that use variables defined outside
of them, which makes first-class functions much more powerful, as we will see after starting with simpler
first-class functions that do not use this ability. The term higher-order function just refers to a function that
takes or returns other functions.



Terms like first-class functions, function closures, and higher-order functions are often confused with each
other or considered synonyms. Because so much of the world is not careful with these terms, we will not be
too worried about them either. But the idea of first-class functions and the idea of function closures really
are distinct concepts that we often use together to write elegant, reusable code. For that reason, we will
delay the idea of closures, so we can introduce it as a separate concept.

There is an even more general term, functional programming. This term also is often used imprecisely to
refer to several distinct concepts. The two most important and most common are:

e Not using mutable data in most or all cases: We have avoided mutation throughout the course so far
and will mostly continue to do so.

e Using functions as values, which is what this unit is all about
There are other things that are also considered related to functional programming:

e A programming style that encourages recursion and recursive data structures
e Programming with a syntax or style that is closer to traditional mathematical definitions of functions
e Anything that is not object-oriented programming (this one is really incorrect)

e Using certain programming idioms related to laziness, a technical term for a certain kind of program-
ming construct/idiom we will study, briefly, later in the course

An obvious related question is “what makes a programming language a functional language?” Your instructor
has come to the conclusion this is not a question for which there is a precise answer and barely makes sense
as a question. But one could say that a functional language is one where writing in a functional style (as
described above) is more convenient, more natural, and more common than programming in other styles. At
a minimum, you need good support for immutable data, first-class functions, and function closures. More
and more we are seeing new languages that provide such support but also provide good support for other
styles, like object-oriented programming, which we will study some toward the end of the course.

Taking Functions as Arguments

The most common use of first-class functions is passing them as arguments to other functions, so we motivate
this use first.

Here is a first example of a function that takes another function:

fun n_times (f,n,x) =
if n=0
then x
else f (n_times(f,n-1,x))

We can tell the argument £ is a function because the last line calls £ with an argument. What n_times does
is compute £ (£f(...(£(x)))) where the number of calls to f is n. That is a genuinely useful helper function
to have around. For example, here are 3 different uses of it:

fun double x = x+x
val x1 = n_times(double,4,7) (* answer: 112 *)



fun increment x = x+1
val x2 = n_times(increment,4,7) (* answer: 11 %)

val x3 = n_times(tl,2,[4,8,12,16]) (* answer: [12,16] *)

Like any helper function, n_times lets us abstract the common parts of multiple computations so we can
reuse some code in different ways by passing in different arguments. The main novelty is making one of
those arguments a function, which is a powerful and flexible programming idiom. It also makes perfect sense
— we are not introducing any new language constructs here, just using ones we already know in ways you
may not have thought of.

Once we define such abstractions, we can find additional uses for them. For example, even if our program
today does not need to triple any values n times, maybe tomorrow it will, in which case we can just define
the function triple_n_times using n_times:

fun triple x = 3*x

fun triple_n_times (n,x) = n_times(triple,n,x)

Polymorphic Types and Functions as Arguments

Let us now consider the type of n_times, which is (’a -> ’a) * int * ’a -> ’a. It might be simpler at
first to consider the type (int -> int) * int * int -> int, which is how n_times is used for x1 and x2
above: It takes 3 arguments, the first of which is itself a function that takes and returns an int. Similarly, for
x3 we use n_times as though it has type (int list -> int list) * int * int list -> int list. But
choosing either one of these types for n_times would make it less useful because only some of our example
uses would type-check. The type (’a -> ’a) * int * ’a -> ’a says the third argument and result can be
any type, but they have to be the same type, as does the argument and return type for the first argument.
When types can be any type and do not have to be the same as other types, we use different letters (°b, ’c,
etc.)

This is called parametric polymorphism, or perhaps more commonly generic types. It lets functions take
arguments of any type. It is a separate issue from first-class functions:

e There are functions that take functions and do not have polymorphic types

e There are functions with polymorphic types that do not take functions.

However, many of our examples with first-class functions will have polymorphic types. That is a good thing
because it makes our code more reusable.

Without parametric polymorphism, we would have to redefine lists for every type of element that a list
might have. Instead, we can have functions that work for any kind of list, like length, which has type
’a list -> int even though it does not use any function arguments. Conversely, here is a higher-order
function that is not polymorphic: it has type (int->int) * int -> int:!

fun times_until_zero (f,x) =
if x = 0 then O else 1 + times_until_zero(f, f x)

1t would be better to make this function tail-recursive using an accumulator.



Anonymous functions

There is no reason that a function like triple that is passed to another function like n_times needs to be
defined at top-level. As usual, it is better style to define such functions locally if they are needed only locally.
So we could write:

fun triple_n_times (n,x) =
let fun triple x = 3*x in n_times(triple,n,x) end

In fact, we could give the triple function an even smaller scope: we need it only as the first argument to
n_times, so we could have a let-expression there that evaluates to the triple function:

fun triple_n_times (n,x) = n_times((let fun triple y = 3%y in triple end), n, x)

Notice that in this example, which is actually poor style, we need to have the let-expression “return” triple
since, as always, a let-expression produces the result of the expression between in and end. In this case, we
simply look up triple in the environment, and the resulting function is the value that we then pass as the
first argument to n_times.

ML has a much more concise way to define functions right where you use them, as in this final, best version:
fun triple_n_times (n,x) = n_times((fn y => 3*y), n, x)

This code defines an anonymous function fn y => 3*y. It is a function that takes an argument y and has
body 3*y. The fn is a keyword and => (not =) is also part of the syntax. We never gave the function a
name (it is anonymous, see?), which is convenient because we did not need one. We just wanted to pass a
function to n_times, and in the body of n_times, this function is bound to f£.

It is common to use anonymous functions as arguments to other functions. Moreover, you can put an
anonymous function anywhere you can put an expression — it simply is a value, the function itself. The
only thing you cannot do with an anonymous function is recursion, exactly because you have no name to
use for the recursive call. In such cases, you need to use a fun binding as before, and fun bindings must be
in let-expressions or at top-level.

For non-recursive functions, you could use anonymous functions with val bindings instead of a fun binding.
For example, these two bindings are exactly the same thing:

fun increment x = x + 1
val increment = fn x => x+1

They both bind increment to a value that is a function that returns its argument plus 1. So function-bindings
are almost syntactic sugar, but they support recursion, which is essential.

Unnecessary Function Wrapping

While anonymous functions are incredibly convenient, there is one poor idiom where they get used for no
good reason. Consider:

fun nth_tail_poor (n,x) = n_times((fn y => tl y), n, x)



What is fn y => t1 y? It is a function that returns the list-tail of its argument. But there is al-
ready a variable bound to a function that does the exact same thing: tl1l! In general, there is no rea-
son to write fn x => f x when we can just use £. This is analogous to the beginner’s habit of writing
if x then true else false instead of x. Just do this:

fun nth_tail (n,x) = n_times(tl, n, x)

Maps and filters

We now consider a very useful higher-order function over lists:

fun map (f,xs) =
case xs of
[1 =1
| x::xs’ => (f x)::(map(f,xs’))

The map function takes a list and a function £ and produces a new list by applying f to each element of the
list. Here are two example uses:

val x1
val x2

map (increment, [4,8,12,16]) (* answer: [5,9,13,17] *)
map (hd, [[1,2]1,[3,41,[5,6,711) (* answer: [1,3,5] *)

The type of map is illuminating: (a -> ’b) * ’a list -> ’b list. You can pass map any kind of list
you want, but the argument type of £ must be the element type of the list (they are both ’a). But the
return type of £ can be a different type ’b. The resulting list is a b 1list. For x1, both ’a and ’b are
instantiated with int. For x2, ’a is int list and ’b is int.

The ML standard library provides a very similar function List.map, but it is defined in a curried form, a
topic we will discuss later in this unit.

The definition and use of map is an incredibly important idiom even though our particular example is simple.
We could have easily written a recursive function over lists of integers that incremented all the elements, but
instead we divided the work into two parts: The map implementer knew how to traverse a recursive data
structure, in this case a list. The map client knew what to do with the data there, in this case increment each
number. You could imagine either of these tasks — traversing a complicated piece of data or doing some
calculation for each of the pieces — being vastly more complicated and best done by different developers
without making assumptions about the other task. That is exactly what writing map as a helper function
that takes a function lets us do.

Here is a second very useful higher-order function for lists. It takes a function of type ’a -> bool and
an ’a list and returns the a list containing only the elements of the input list for which the function
returns true:

fun filter (f,xs) =
case xs of
0 =>1
| x::xs? => if f x
then x::(filter (f,xs’))
else filter (f,xs’)

Here is an example use that assumes the list elements are pairs with second component of type int; it returns
the list elements where the second component is even:



fun get_all_even_snd xs = filter((fn (_,v) => v mod 2 = 0), xs)

(Notice how we are using a pattern for the argument to our anonymous function.)

Returning functions

Functions can also return functions. Here is an example:

fun double_or_triple f =
if £7
then fn x => 2*x
else fn x => 3*x

The type of double_or_triple is (int -> bool) -> (int -> int): The if-test makes the type of £ clear
and as usual the two branches of the if must have the same type, in this case int->int. However, ML will
print the type as (int -> bool) -> int -> int, which is the same thing. The parentheses are unnecessary
because the -> “associates to the right”, i.e., t1 -> t2 -> t3 -> tdistl -> (t2 -> (t3 -> t4)).

Not just for numbers and lists

Because ML programs tend to use lists a lot, you might forget that higher-order functions are useful for more
than lists. Some of our first examples just used integers. But higher-order functions also are great for our
own data structures. Here we use an is_even function to see if all the constants in an arithmetic expression
are even. We could easily reuse true_of_all_constants for any other property we wanted to check.

datatype exp = Constant of int | Negate of exp | Add of exp * exp | Multiply of exp * exp

fun is_even v =
(v mod 2 = 0)

fun true_of_all_constants(f,e) =
case e of

Constant i = f i
| Negate el => true_of_all_constants(f,el)
| Add(el,e2) => true_of_all_constants(f,el) andalso true_of_all_constants(f,e2)

| Multiply(el,e2) => true_of_all_constants(f,el) andalso true_of_all_constants(f,e2)

fun all_even e = true_of_all_constants(is_even,e)

Lexical Scope

So far, the functions we have passed to or returned from other functions have been closed: the function
bodies used only the function’s argument(s) and any locally defined variables. But we know that functions
can do more than that: they can use any bindings that are in scope. Doing so in combination with higher-
order functions is very powerful, so it is crucial to learn effective idioms using this technique. But first it is



even more crucial to get the semantics right. This is probably the most subtle and important concept in the
entire course, so go slowly and read carefully.

The body of a function is evaluated in the environment where the function is defined, not the environment
where the function is called. Here is a very simple example to demonstrate the difference:

val x = 1
fun f y=x+y
val x = 2
val y = 3
val z = £ (x+y)

In this example, £ is bound to a function that takes an argument y. Its body also looks up x in the
environment where £ was defined. Hence this function always increments its argument since the environment
at the definition maps x to 1. Later we have a different environment where £ maps to this function, x maps
to 2, y maps to 3, and we make the call £ x. Here is how evaluation proceeds:

e Look up f to get the previously described function.
e Evaluate the argument x+y in the current environment by looking up x and y, producing 5.

e Call the function with the argument 5, which means evaluating the body x+y in the “old” environment
where x maps to 1 extended with y mapping to 5. So the result is 6.

Notice the argument was evaluated in the current environment (producing 5), but the function body was
evaluated in the “old” environment. We discuss below why this semantics is desirable, but first we define this
semantics more precisely and understand the semantics with additional silly examples that use higher-order
functions.

This semantics is called lexical scope. The alternate, inferior semantics where you use the current environment
(which would produce 7 in the above example) is called dynamic scope.

Environments and Closures

We have said that functions are values, but we have not been precise about what that value exactly is. We
now explain that a function value has two parts, the code for the function (obviously) and the environment
that was current when we created the function. These two parts really do form a “pair” but we put “pair” in
quotation marks because it is not an ML pair, just something with two parts. You cannot access the parts
of the “pair” separately; all you can do is call the function. This call uses both parts because it evaluates
the code part using the environment part.

This “pair” is called a function closure or just closure. The reason is that while the code itself can have free
variables (variables that are not bound inside the code so they need to be bound by some outer environment),
the closure carries with it an environment that provides all these bindings. So the closure overall is “closed”
— it has everything it needs to produce a function result given a function argument.

In the example above, the binding fun £ y = x + y bound f to a closure. The code part is the function
fn y => x + y and the environment part maps x to 1. Therefore, any call to this closure will return y+1.



(Silly) Examples Including Higher-Order Functions

Lexical scope and closures get more interesting when we have higher-order functions, but the semantics
already described will lead us to the right answers.

Example 1:
val x = 1

fun f y
let

val x = y+1
in
fnz=>x+y + z

val x
val g = f 4
val y

z

val 6

]
g O Hh W

Here, f is bound to a closure where the environment part maps x to 1. So when we later evaluate £ 4, we
evaluate let val x =y + 1 in fn z => x + y + z end in an environment where x maps to 1 extended
to map y to 4. But then due to the let-binding we shadow x so we evaluate fn z => x + y + z in an
environment where x maps to 5 and y maps to 4. How do we evaluate a function like fn z => x + y + z?
We create a closure with the current environment. So f 4 returns a closure that, when called, will always
add 9 to its argument, no matter what the environment is at any call-site. Hence, in the last line of the
example, z will be bound to 15.

Example 2:

fun f g =
let
val x = 3
in
g 2
end
val x = 4
fun hy=x+y
val z = f h

In this example, f is bound to a closure that takes another function g as an argument and returns the result
of g 2. The closure bound to h always adds 4 to its argument because the argument is y, the body is x+y,
and the function is defined in an environment where x maps to 4. So in the last line, z will be bound to
6. The binding val x = 3 is totally irrelevant: the call g 2 is evaluated by looking up g to get the closure
that was passed in and then using that closure with its environment (in which x maps to 4) with 2 for an
argument.

Why Lexical Scope

While lexical scope and higher-order functions take some getting used to, decades of experience make clear
that this semantics is what we want. Much of the rest of this section will describe various widespread idioms
that are powerful and that rely on lexical scope.



But first we can also motivate lexical scope by showing how dynamic scope (where you just have one current
environment and use it to evaluate function bodies) leads to some fundamental problems.

First, suppose in Example 1 above the body of £ was changed to let val q = y+1 in fn z => q + y + z.
Under lexical scope this is fine: we can always change the name of a local variable and its uses without it
affecting anything. Under dynamic scope, now the call to g 6 will make no sense: we will try to look up q,
but there is no q in the environment at the call-site.

Second, consider again the original version of Example 1 but now change the line val x = 3toval x = "hi".
Under lexical scope, this is again fine: that binding is never actually used. Under dynamic scope, the call to
g 6 will look-up x, get a string, and try to add it, which should not happen in a program that type-checks.

Similar issues arise with Example 2: The body of f in this example is awful: we have a local binding we
never use. Under lexical scope we can remove it, changing the body to g 2 and know that this has no effect
on the rest of the program. Under dynamic scope it would have an effect. Also, under lexical scope we know
that any use of the closure bound to h will add 4 to its argument regardless of how other functions like g
are implemented and what variable names they use. This is a key separation-of-concerns that only lexical
scope provides.

For “regular” variables in programs, lexical scope is the way to go. There are some compelling uses for
dynamic scoping for certain idioms, but few languages have special support for these (Racket does) and very
few if any modern languages have dynamic scoping as the default. But you have seen one feature that is
more like dynamic scope than lexical scope: exception handling. When an exception is raised, evaluation
has to “look up” which handle expression should be evaluated. This “look up” is done using the dynamic
call stack, with no regard for the lexical structure of the program.

Passing Closures to Iterators Like Filter

The examples above are silly, so we need to show useful programs that rely on lexical scope. The first idiom
we will show is passing functions to iterators like map and filter. The functions we previously passed did not
use their environment (only their arguments and maybe local variables), but being able to pass in closures
makes the higher-order functions much more widely useful. Consider:

fun filter (f,xs) =
case xs of
[1 =11
| x::xs’ => if f x then x::(filter(f,xs’)) else filter(f,xs’)

fun allGreaterThanSeven xs = filter (fn x => x > 7, xs)

fun allGreaterThan (xs,n) = filter (fn x => x > n, xs)

Here, allGreaterThanSeven is “old news” — we pass in a function that removes from the result any numbers
7 or less in a list. But it is much more likely that you want a function like allGreaterThan that takes the
“limit” as a parameter n and uses the function fn x => x > n. Notice this requires a closure and lexical
scope! When the implementation of filter calls this function, we need to look up n in the environment
where fn x => x > n was defined.

Here are two additional examples:

fun allShorterThanl (xs,s) = filter (fn x => String.size x < String.size s, xs)



fun allShorterThan2 (xs,s) =

let

val i = String.size s
in

filter(fn x => String.size x < i, xs)
end

Both these functions take a list of strings xs and a string s and return a list containing only the strings in
xs that are shorter than s. And they both use closures, to look up s or i when the anonymous functions get
called. The second one is more complicated but a bit more efficient: The first one recomputes String.size s
once per element in xs (because filter calls its function argument this many times and the body evaluates
String.size s each time). The second one “precomputes” String.size s and binds it to a variable i
available to the function fn x => String.size x < i.

Fold and More Closure Examples

Beyond map and filter, a third incredibly useful higher-order function is fold, which can have several slightly
different definitions and is also known by names such as reduce and inject. Here is one common definition:

fun fold (f,acc,xs) =
case xs of
[ => acc
| x::x8’ => fold (f, f(acc,x), xs’)

fold takes an “initial answer” acc and uses £ to “combine” acc and the first element of the list, using this
as the new “initial answer” for “folding” over the rest of the list. We can use fold to take care of iterating
over a list while we provide some function that expresses how to combine elements. For example, to sum the
elements in a list foo, we can do:

fold ((fn (x,y) => x+y), 0, foo)

As with map and filter, much of fold’s power comes from clients passing closures that can have “private
fields” (in the form of variable bindings) for keeping data they want to consult. Here are two examples.
The first counts how many elements are in some integer range. The second checks if all elements are strings
shorter than some other string’s length.

fun numberInRange (xs,lo,hi) =
fold ((fn (x,y) =>
x + (if y >= lo andalso y <= hi then 1 else 0)),
0, xs)

fun areAllShorter (xs,s) =

let

val i = String.size s
in

fold((fn (x,y) => x andalso String.size y < i), true, xs)
end

This pattern of splitting the recursive traversal (fold or map) from the data-processing done on the elements
(the closures passed in) is fundamental. In our examples, both parts are so easy we could just do the whole
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thing together in a few simple lines. More generally, we may have a very complicated set of data structures
to traverse or we may have very involved data processing to do. It is good to separate these concerns so that
the programming problems can be solved separately.

Another Closure Idiom: Combining Functions

Function composition

When we program with lots of functions, it is useful to create new functions that are just combinations of
other functions. You have probably done similar things in mathematics, such as when you compose two
functions. For example, here is a function that does exactly function composition:

fun compose (f,g) = fn x => £ (g x)

It takes two functions £ and g and returns a function that applies its argument to g and makes that the
argument to f. Crucially, the code fn x => f (g x) uses the £ and g in the environment where it was
defined. Notice the type of compose is inferred to be (’a -> ’b) * (’c -> ’a) -> ’c -> ’b, which is
equivalent to what you might write: (°’b -> ’¢c) * (Pa -> ’b) -> (’a -> ’c) since the two types simply
use different type-variable names consistently.

As a cute and convenient library function, the ML library defines the infix operator o as function composition,
just like in math. So instead of writing:

fun sqrt_of_abs i = Math.sqrt(Real.fromInt (abs i))

you could write:

fun sqrt_of_abs i = (Math.sqrt o Real.fromInt o abs) i

But this second version makes clearer that we can just use function-composition to create a function that
we bind to a variable with a val-binding, as in this third version:

val sqrt_of_abs = Math.sqrt o Real.fromInt o abs

While all three versions are fairly readable, the first one does not immediately indicate to the reader that
sqrt_of _abs is just the composition of other functions.

The Pipeline Operator

In functional programming, it is very common to compose other functions to create larger ones, so it makes
sense to define convenient syntax for it. While the third version above is concise, it, like function composition
in mathematics, has the strange-to-many-programmers property that the computation proceeds from right-
to-left: “Take the absolute value, convert it to a real, and compute the square root” may be easier to
understand than, “Take the square root of the conversion to real of the absolute value.”

We can define convenient syntax for left-to-right as well. Let’s first define our own infix operator that lets
us put the function to the right of the argument we are calling it with:

infix |> (* tells the parser |> is a function that appears between its two arguments *)
fun x [> f = f x
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Now we can write:
fun sqrt_of_abs i = i [|> abs |> Real.fromInt |> Math.sqrt

This operator, commonly called the pipeline operator, is very popular in F# programming. (F+# is a dialect
of ML that runs on .Net and interacts well with libraries written in other .Net languages.) As we have seen,
there is nothing complicated about the semantics of the pipeline operator.

Another Closure Idiom: Currying and Partial Application

The next idiom we consider is very convenient in general, and is often used when defining and using higher-
order functions like map, filter, and fold. We have already seen that in ML every function takes exactly
one argument, so you have to use an idiom to get the effect of multiple arguments. Our previous approach
passed a tuple as the one argument, so each part of the tuple is conceptually one of the multiple arguments.
Another more clever and often more convenient way is to have a function take the first conceptual argument
and return another function that takes the second conceptual argument and so on. Lexical scope is essential
to this technique working correctly.

This technique is called currying after a logician named Haskell Curry who studied related ideas (so if you
do not know that, then the term currying does not make much sense).

Defining and Using a Curried Function

Here is an example of a “three argument” function that uses currying:
val sorted3 = fn x => fn y => fn z => z >= y andalso y >= x

If we call sorted3 4 we will get a closure that has x in its environment. If we then call this closure with
5, we will get a closure that has x and y in its environment. If we then call this closure with 6, we will get
true because 6 is greater than 5 and 5 is greater than 4. That is just how closures work.

So ((sorted3 4) 5) 6 computes exactly what we want and feels pretty close to calling sorted3 with 3 argu-
ments. Even better, the parentheses are optional, so we can write exactly the same thing as sorted3 4 5 6,
which is actually fewer characters than our old tuple approach where we would have:

fun sorted3_tupled (x,y,z) = z >= y andalso y >= x
val someClient = sorted3_tupled(4,5,6)

In general, the syntax el e2 e3 e4 is implicitly the nested function calls (((el e2) e3) e4) and this
choice was made because it makes using a curried function so pleasant.
Partial Application

Even though we might expect most clients of our curried sorted3 to provide all 3 conceptual arguments, they
might provide fewer and use the resulting closure later. This is called “partial application” because we are
providing a subset (more precisely, a prefix) of the conceptual arguments. As a silly example, sorted3 0 0
returns a function that returns true if its argument is nonnegative.

Partial Application and Higher-Order Functions

Currying is particularly convenient for creating similar functions with iterators. For example, here is a
curried version of a fold function for lists:
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fun fold f = fn acc => fn xs =>
case xs of
0 => acc
| x::x8’ => fold f (f(acc,x)) xs’

Now we could use this fold to define a function that sums a list elements like this:
fun suml xs = fold (fn (x,y) => x+y) 0 xs

But that is unnecessarily complicated compared to just using partial application:
val sum2 = fold (fn (x,y) => x+y) O

The convenience of partial application is why many iterators in ML’s standard library use currying with the
function they take as the first argument. For example, the types of all these functions use currying:

val List.map = fn : (a -> ’b) -> ’a list -> ’b list
val List.filter = fn : (’a -> bool) -> ’a list -> ’a list
val List.foldl = fn : (Pa * ’b -> ’b) -> ’b -> ’a list -> ’b

As an example, List.f0ld1((fn (x,y) => x+y), 0, [3,4,5]) does not type-check because List.foldl
expectsa ’a * b -> ’bfunction, not a triple. The correct callis List.foldl (fn (x,y) => x+y) 0 [3,4,5],
which calls List.foldl with a function, which returns a closure and so on.

There is syntactic sugar for defining curried functions; you can just separate the conceptual arguments by
spaces rather than using anonymous functions. So the better style for our fold function would be:

fun fold f acc xs =
case xs of
[] => acc
| x::xs8’ => fold f (f(acc,x)) xs’

Another useful curried function is List.exists, which we use in the callback example below. These library
functions are easy to implement ourselves, so we should understand they are not fancy:

fun exists predicate xs =
case xs of
[1 => false
| x::xs’ => predicate x orelse exists predicate xs’

Currying in General

While currying and partial application are great for higher-order functions, they are great in general too.
They work for any multi-argument function and partial application can also be surprisingly convenient. In
this example, both zip and range are defined with currying and countup partially applies range. The
add_numbers function turns the list [v1,v2,...,vn] into [(1,v1),(2,v2),...,(n,vn)].

fun zip xs ys =
case (xs,ys) of
1,0 = 1
| (x::xs?,y::ys’) => (x,y) :: (zip xs’ ys’)
| _ => raise Empty
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fun range i j = if i > j then [] else i :: range (i+l) j
val countup = range 1
fun add_numbers xs = zip (countup (length xs)) xs

Combining Functions to Curry and Uncurry Other Functions

Sometimes functions are curried but the arguments are not in the order you want for a partial application.
Or sometimes a function is curried when you want it to use tuples or vice-versa. Fortunately our earlier
idiom of combining functions can take functions using one approach and produce functions using another:

fun other_curryl f = fn x => fn y => f y x
fun other_curry2 f xy = f y x

fun curry f x y = £ (x,y)

fun uncurry f (x,y) = f xy

Looking at the types of these functions can help you understand what they do. As an aside, the types are
also fascinating because if you pronounce -> as “implies” and * as “and”, the types of all these functions
are logical tautologies.

Efficiency

Finally, you might wonder which is faster, currying or tupling. It almost never matters; they both do work
proportional to the number of conceptual arguments, which is typically quite small. For the performance-
critical functions in your software, it might matter to pick the faster way. In the version of the ML compiler we
are using, tupling happens to be faster. In widely used implementations of OCaml, Haskell, and F#, curried
functions are faster so they are the standard way to define multi-argument functions in those languages.

The Value Restriction

Once you have learned currying and partial application, you might try to use it to create a polymorphic
function. Unfortunately, certain uses, such as these, do not work in ML:

val mapSome = List.map SOME (*turn [v1,v2,...,vn] into [SOME v1, SOME v2, ..., SOME vn]x*)
val pairIt = List.map (fn x => (x,x)) (*turn [v1,v2,...,vn] into [(v1,v1),(v2,v2),...,(vn,vn)]*)

Given what we have learned so far, there is no reason why this should not work, especially since all these
functions do work:

fun mapSome xs = List.map SOME xs

val mapSome = fn xs => List.map SOME xs

val pairIt : int list -> (int * int) list = List.map (fn x => (x,x))
val incrementIt = List.map (fn x => x+1)

The reason is called the value restriction and it is sometimes annoying. It is in the language for good reason:
without it, the type-checker might allow some code to break the type system. This can happen only with
code that is using mutation and the code above is not, but the type-checker does not know that.

The simplest approach is to ignore this issue until you get a warning/error about the value restriction. When
you do, turn the val-binding back into a fun-binding like in the first example above of what works.

When we study type inference in the next unit, we will discuss the value restriction in a little more detail.
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Mutation via ML References

We now finally introduce ML’s support for mutation. Mutation is okay in some settings. A key approach
in functional programming is to use it only when “updating the state of something so all users of that state
can see a change has occurred” is the natural way to model your computation. Moreover, we want to keep
features for mutation separate so that we know when mutation is not being used.

In ML, most things really cannot be mutated. Instead you must create a reference, which is a container
whose contents can be changed. You create a new reference with the expression ref e (the initial contents
are the result of evaluating e). You get a reference r’s current contents with !'r (not to be confused with
negation in Java or C), and you change r’s contents with r := e. The type of a reference that contains
values of type t is written t ref.

One good way to think about a reference is as a record with one field where that field can be updated with
the := operator.

Here is a short example:

val x = ref O

val x2 = x (* x and x2 both refer to the same reference *)
val x3 = ref O

(x val y = x + 1x) (* wrong: x is not an int *)

val y = (!x) + 1 (x y is 1 %)

val _ = x := ('x) + 7 (* the contents of the reference x refers to is now 7 *)
val z1 = !'x (x z1 is 7 *)
val z2 = 1x2 (* z2 is also 7 -- with mutation, aliasing mattersx)

val z3 = 1x3 (x z3 is 0 *)

Another Closure Idiom: Callbacks

The next common idiom we consider is implementing a library that detects when “events” occur and informs
clients that have previously “registered” their interest in hearing about events. Clients can register their
interest by providing a “callback” — a function that gets called when the event occurs. Examples of events
for which you might want this sort of library include things like users moving the mouse or pressing a key.
Data arriving from a network interface is another example. Computer players in a game where the events
are “it is your turn” is yet another.

The purpose of these libraries is to allow multiple clients to register callbacks. The library implementer has
no idea what clients need to compute when an event occurs, and the clients may need “extra data” to do the
computation. So the library implementor should not restrict what “extra data” each client uses. A closure is
ideal for this because a function’s type t1 -> t2 does not specify the types of any other variables a closure
uses, so we can put the “extra data” in the closure’s environment.

If you have used “event listeners” in Java’s Swing library, then you have used this idiom in an object-oriented
setting. In Java, you get “extra data” by defining a subclass with additional fields. This can take an awful
lot of keystrokes for a simple listener, which is a (the?) main reason the Java language added anonymous
inner classes (which you do not need to know about for this course, but we will show an example later),
which are closer to the convenience of closures.

In ML, we will use mutation to show the callback idiom. This is reasonable because we really do want
registering a callback to “change the state of the world” — when an event occurs, there are now more
callbacks to invoke.
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Our example uses the idea that callbacks should be called when a key on the keyboard is pressed. We will
pass the callbacks an int that encodes which key it was. Our interface just needs a way to register callbacks.
(In a real library, you might also want a way to unregister them.)

val onKeyEvent : (int -> unit) -> unit

Clients will pass a function of type int -> unit that, when called later with an int, will do whatever they
want. To implement this function, we just use a reference that holds a list of the callbacks. Then when an
event actually occurs, we assume the function onEvent is called and it calls each callback in the list:

val cbs : (int -> unit) list ref = ref []
fun onKeyEvent f = cbs := f::(!cbs) (* The only "public" binding *)
fun onEvent i =
let fun loop fs =
case fs of
=0
| £::fs’ => (£ i; loop fs’)
in loop (!cbs) end

Most importantly, the type of onKeyEvent places no restriction on what extra data a callback can access
when it is called. Here are different clients (calls to onKeyEvent) that use different bindings of different types
in their environment. (The val _ = e idiom is common for executing an expression just for its side-effect,
in this case registering a callback.)

val timesPressed = ref 0
val _ = onKeyEvent (fn _ => timesPressed := (!timesPressed) + 1)

fun printIfPressed i
onKeyEvent (fn j => if i=j
then print ("you pressed " ~ Int.toString i ~ "\n")
else )

val printIfPressed 4
val _ = printIfPressed 11
val printIfPressed 23

Optional: Another Closure Idiom: Abstract Data Types

This last closure idiom we will consider is the fanciest and most subtle. It is not the sort of thing programmers
typically do — there is usually a simpler way to do it in a modern programming language. It is included as
an advanced example to demonstrate that a record of closures that have the same environment is a lot like
an object in object-oriented programming: the functions are methods and the bindings in the environment
are private fields and methods. There are no new language features here, just lexical scope. It suggests
(correctly) that functional programming and object-oriented programming are more similar than they might
first appear (a topic we will revisit later in the course; there are also important differences).

The key to an abstract data type (ADT) is requiring clients to use it via a collection of functions rather
than directly accessing its private implementation. Thanks to this abstraction, we can later change how the
data type is implemented without changing how it behaves for clients. In an object-oriented language, you
might implement an ADT by defining a class with all private fields (inaccessible to clients) and some public
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methods (the interface with clients). We can do the same thing in ML with a record of closures; the variables
that the closures use from the environment correspond to the private fields.

As an example, consider an implementation of a set of integers that supports creating a new bigger set and
seeing if an integer is in a set. Our sets are mutation-free in the sense that adding an integer to a set produces
a new, different set. (We could just as easily define a mutable version using ML’s references.) In ML, we
could define a type that describes our interface:

datatype set = S of { insert : int -> set, member : int -> bool, size : unit -> int }

Roughly speaking, a set is a record with three fields, each of which holds a function. It would be simpler to
write:

type set = { insert : int -> set, member : int -> bool, size : unit -> int }

but this does not work in ML because type bindings cannot be recursive. So we have to deal with the mild
inconvenience of having a constructor S around our record of functions defining a set even though sets are
each-of types, not one-of types. Notice we are not using any new types or features; we simply have a type
describing a record with fields named insert, member, and size, each of which holds a function.

Once we have an empty set, we can use its insert field to create a one-element set, and then use that set’s

insert field to create a two-element set, and so on. So the only other thing our interface needs is a binding
like this:

val empty_set = ... : set

Before implementing this interface, let’s see how a client might use it (many of the parentheses are optional
but may help understand the code):

fun use_sets () =
let val S s1 = empty_set

val S s2 = (#insert s1) 34
val S s3 = (#insert s2) 34
val S s4 = #insert s3 19
in
if (#member s4) 42
then 99
else if (#member s4) 19
then 17 + (#size s3) ()
else O
end

Again we are using no new features. #insert s1 is reading a record field, which in this case produces a
function that we can then call with 34. If we were in Java, we might write s1.insert(34) to do something
similar. The val bindings use pattern-matching to “strip off” the S constructors on values of type set.

There are many ways we could define empty_set; they will all use the technique of using a closure to

“remember” what elements a set has. Here is one way:

val empty_set =
let
fun make_set xs = (* xs is a "private field" in result )
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let (* contains a "private method" in result *)
fun contains i = List.exists (fn j => i=j) xs
in
S { insert = fn i => if contains i
then make_set xs
else make_set (i::xs),
member = contains,
size fn () => length xs

end
in
make_set []
end

All the fanciness is in make_set, and empty_set is just the record returned by make_set []. What make_set
returns is a value of type set. It is essentially a record with three closures. The closures can use xs, the
helper function contains, and make_set. Like all function bodies, they are not executed until they are
called.

Optional: Closures in Other Languages

To conclude our study of function closures, we digress from ML to show similar programming patterns in
Java (using generics and interfaces) and C (using function pointers taking explicit environment arguments).
We will not test you on this material, and you are welcome to skip it. However, it may help you understand
closures by seeing similar ideas in other settings, and it should help you see how central ideas in one language
can influence how you might approach problems in other languages. That is, it could make you a better
programmer in Java or C.

For both Java and C, we will “port” this ML code, which defines our own polymorphic linked-list type
constructor and three polymorphic functions (two higher-order) over that type. We will investigate a couple
ways we could write similar code in Java or C, which will can help us better understand similarities between
closures and objects (for Java) and how environments can be made explicit (for C). In ML, there is no reason
to define our own type constructor since ’a list is already written, but doing so will help us compare to
the Java and C versions.

datatype ’a mylist = Cons of ’a * (’a mylist) | Empty

fun map f xs =
case xs of
Empty => Empty
| Cons(x,xs) => Cons(f x, map f xs)

fun filter f xs =
case xs of
Empty => Empty
| Cons(x,xs) => if f x then Cons(x,filter f xs) else filter f xs

fun length xs =

case xs of
Empty => 0
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| Cons(_,xs) => 1 + length xs

Using this library, here are two client functions. (The latter is not particularly efficient, but shows a simple
use of length and filter.)

val doubleAll = map (fn x => x * 2)
fun countNs (xs, n : int) = length (filter (fn x => x=n) xs)

Optional: Closures in Java using Objects and Interfaces

Java 8 includes support for closures much like most other mainstream object-oriented languages now do
(C#, Scala, Ruby, ...), but it is worth considering how we might write similar code in Java without this
support, as has been necessary for almost two decades. While we do not have first-class functions, currying,
or type inference, we do have generics (Java did not used to) and we can define interfaces with one method,
which we can use like function types. Without further ado, here is a Java analogue of the code, followed by
a brief discussion of features you may not have seen before and other ways we could have written the code:

interface Func<B,A> {
B m(A x);
}
interface Pred<A> {
boolean m(A x);
}
class List<T> {
T head;
List<T> tail;
List(T x, List<T> xs) {
head = x;
tail = xs;
}
static <A,B> List<B> map(Func<B,A> f, List<A> xs) {
if (xs==null)
return null;
return new List<B>(f.m(xs.head), map(f,xs.tail));
}
static <A> List<A> filter(Pred<A> f, List<A> xs) {
if (xs==null)
return null;
if (f.m(xs.head))
return new List<A>(xs.head, filter(f,xs.tail));
return filter(f,xs.tail);
}
static <A> int length(List<A> xs) {
int ans = O;
while(xs != null) {
++ans;
Xs = xs.tail;
}

return ans;
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}

class ExampleClients {

static List<Integer> doubleAll(List<Integer> xs) {
return List.map((new Func<Integer,Integer>() {
public Integer m(Integer x) { return x * 2; }
b,
xs);
}
static int countNs(List<Integer> xs, final int n) {
return List.length(List.filter((new Pred<Integer>() {
public boolean m(Integer x) { return x==n; }
b,

xs));

This code uses several interesting techniques and features:

In place of the (inferred) function types a -> ’b for map and ’a -> bool for filter, we have generic
interfaces with one method. A class implementing one of these interfaces can have fields of any types
it needs, which will serve the role of a closure’s environment.

The generic class List serves the role of the datatype binding. The constructor initializes the head
and tail fields as expected, using the standard Java convention of null for the empty list.

Static methods in Java can be generic provided the type variables are explicitly mentioned to the left
of the return type. Other than that and syntax, the map and filter implementations are similar to
their ML counterparts, using the one method in the Func or Pred interface as the function passed as
an argument. For length, we could use recursion, but choose instead to follow Java’s preference for
loops.

If you have never seen anonymous inner classes, then the methods doubleAll and countNs will look
quite odd. Somewhat like anonymous functions, this language feature lets us crate an object that
implements an interface without giving a name to that object’s class. Instead, we use new with
the interface being implemented (instantiating the type variables appropriately) and then provide
definitions for the methods. As an inner class, this definition can use fields of the enclosing object
or final local variables and parameters of the enclosing method, gaining much of the convenience of a
closure’s environment with more cumbersome syntax. (Anonymous inner classes were added to Java
to support callbacks and similar idioms.)

There are many different ways we could have written the Java code. Of particular interest:

e Tail recursion is not as efficient as loops in implementations of Java, so it is reasonable to prefer loop-

based implementations of map and filter. Doing so without reversing an intermediate list is more
intricate than you might think (you need to keep a pointer to the previous element, with special code
for the first element), which is why this sort of program is often asked at programming interviews. The
recursive version is easy to understand, but would be unwise for very long lists.

e A more object-oriented approach would be to make map, filter, and length instance methods instead

of static methods. The method signatures would change to:
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<B> List<B> map(Func<B,T> f) {...}
List<T> filter(Pred<T> f) {...}
int length() {...}

The disadvantage of this approach is that we have to add special cases in any use of these methods if
the client may have an empty list. The reason is empty lists are represented as null and using null
as the receiver of a call raises a NullPointerException. So methods doubleAll and countNs would
have to check their arguments for null to avoid such exceptions.

e Another more object-oriented approach would be to not use null for empty lists. Instead we would
have an abstract list class with two subclasses, one for empty lists and one for nonempty lists. This
approach is a much more faithful object-oriented approach to datatypes with multiple constructors,
and using it makes the previous suggestion of instance methods work out without special cases. It does
seem more complicated and longer to programmers accustomed to using null.

e Anonymous inner classes are just a convenience. We could instead define “normal” classes that imple-
ment Func<Integer,Integer> and Pred<Integer> and create instances to pass to map and filter.
For the countNs example, our class would have an int field for holding n and we would pass the value
for this field to the constructor of the class, which would initialize the field.

Optional: Closures in C Using Explicit Environments

C does have functions, but they are not closures. If you pass a pointer to a function, it is only a code pointer.
As we have studied, if a function argument can use only its arguments, higher-order functions are much less
useful. So what can we do in a language like C? We can change the higher-order functions as follows:

e Take the environment explicitly as another argument.
e Have the function-argument also take an environment.

e When calling the function-argument, pass it the environment.
So instead of a higher-order function looking something like this:
int f(int (*g)(int), list_t xs) { ... g(xs->head) ... }
we would have it look like this:
int f(int (*g)(void*,int), void* env, list_t xs) { ... g(env,xs->head) ... }
We use void* because we want £ to work with functions that use environments of different types, so there is

no good choice. Clients will have to cast to and from void* from other compatible types. We do not discuss
those details here.

While the C code has a lot of other details, this use of explicit environments in the definitions and uses of

map and filter is the key difference from the versions in other languages:

#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>

21



typedef struct List list_t;
struct List {
void * head;
list_t * tail;
};
list_t * makelist (void * x, list_t * xs) {
list_t * ans = (list_t *)malloc(sizeof (list_t));
ans—->head = x;
ans->tail = Xxs;
return ans;
}
list_t * map(void* (*f) (void*,void*), void* env, list_t * xs) {
if (xs==NULL)
return NULL;
return makelist(f (env,xs->head), map(f,env,xs->tail));
}
list_t * filter(bool (*f) (void*,void*), void* env, list_t * xs) {
if (xs==NULL)
return NULL;
if (f (env,xs->head))
return makelist(xs->head, filter(f,env,xs->tail));
return filter(f,env,xs->tail);
}
int length(list_t* xs) {
int ans = 0;
while(xs != NULL) {
++ans;
Xs = xs->tail;
}
return ans;
}
void* doubleInt(void* ignore, void* i) { // type casts to match what map expects
return (void*) (((intptr_t)i)*2);
}
list_t * doubleAll(list_t * xs) { // assumes list holds intptr_t fields
return map(doubleInt, NULL, xs);
}
bool isN(void* n, void* i) { // type casts to match what filter expects
return ((intptr_t)n)==((intptr_t)i);
}
int countNs(list_t * xs, intptr_t n) { // assumes list hold intptr_t fields
return length(filter(isN, (void*)n, xs));
}

As in Java, using recursion instead of loops is much simpler but likely less efficient. Another alternative
would be to define structs that put the code and environment together in one value, but our approach of
using an extra void* argument to every higher-order function is more common in C code.

For those interested in C-specification details: Also note the client code above, specifically the code in
functions doubleInt, isN, and countNs, is not portable because it is not technically legal to assume that
an intptr_t can be cast to a void* and back unless the value started as a pointer (rather than a number
that fits in an intptr_t). While the code as written above is a fairly common approach, portable versions
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would either need to use a pointer to a number or replace the uses of void* in the library with intptr_t.
The latter approach is still a reusable library because any pointer can be converted to intptr_t and back.

Standard-Library Documentation

This topic is not closely related to the rest of the unit, but we need it a little for Homework 3, it is useful
for any programming language, and it shows some of the useful functions (higher-order or not) predefined
in ML.

ML, like many languages, has a standard library. This is code that programs in the language can assume is
always available. There are two common and distinct reasons for code to be in a standard library:

e We need a standard-library to interface with the “outside world” to provide features that would oth-
erwise be impossible to implement. Examples include opening a file or setting a timer.

e A standard-library can provide functions so common and useful that it is appropriate to define them
once so that all programs can use the same function name, order of arguments, etc. Examples include
functions to concatenate two strings, map over a list, etc.

Standard libraries are usually so large that it makes no sense to expect to be taught them. You need to get
comfortable seeking out documentation and developing a rough intuition on “what is likely provided” and
“where it is likely to be.” So on Homework 3, we are leaving it to you to find out more about a few simple
functions in ML’s Standard Library.

The online documentation is very primitive compared to most modern languages, but it is entirely sufficient
for our needs. Just go to:

http://www.standardml.org/Basis/manpages.html

The functions are organized using ML’s module system, which we will study the basics of in the next unit.
For example, useful functions over characters are in the structure Char. To use a function foo in structure
Bar, you write Bar.foo, which is exactly how we have been using functions like List.map. One wrinkle is
that functions for the String structure are documented under the signature STRING. Signatures are basically
types for structures, as we will study later. Certain library functions are considered so useful they are not
in a structure, like hd. These bindings are described at
http://www.standardml.org/Basis/top-level-chapter.html.

There is no substitute for precise and complete documentation of code libraries, but sometimes it can be
inconvenient to look up the full documentation when you are in the middle of programming and just need
a quick reminder. For example, it is easy to forget the order of arguments or whether a function is curried
or tupled. Often you can use the REPL to get the information you need quickly. After all, if you enter a
function like List.map, it evaluates this expression and returns its type. You can even guess the name of a
function if you do not remember what it is called. If you are wrong, you will just get an undefined-variable
message. Finally, using features just beyond what we will study, you can get the REPL to print out all the
bindings provided by a structure. Just do this for example:

structure X = List; (* List is the structure we want to know about *)
structure X : LIST (* This is what the REPL gives back *)
signature X = LIST; (* Write LIST because that is what follows the : on the previous line

Because looking things up in the REPL is so convenient, some REPLs for other languages have gone further
and provided special commands for printing the documentation associated with functions or libraries.
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Modules for Namespace Management

We start by showing how ML modules can be used to separate bindings into different namespaces. We then
build on this material to cover the much more interesting and important topic of using modules to hide
bindings and types.

To learn the basics of ML, pattern-matching, and functional programming, we have written small programs
that are just a sequence of bindings. For larger programs, we want to organize our code with more structure.
In ML, we can use structures to define modules that contain a collection of bindings. At its simplest, you can
write structure Name = struct bindings end where Name is the name of your structure (you can pick
anything; capitalization is a convention) and bindings is any list of bindings, containing values, functions,
exceptions, datatypes, and type synonyms. Inside the structure you can use earlier bindings just like we
have been doing “at top-level” (i.e., outside of any module). Outside the structure, you refer to a binding b



in Name by writing Name.b. We have already been using this notation to use functions like List.foldl; now
you know how to define your own structures.

Though we will not do so in our examples, you can nest structures inside other structures to create a tree-
shaped hierarchy. But in ML, modules are not expressions: you cannot define them inside of functions, store
them in tuples, pass them as arguments, etc.

If in some scope you are using many bindings from another structure, it can be inconvenient to write
SomeLongStructureName.foo many times. Of course, you can use a val-binding to avoid this, e.g.,

val foo = SomeLongStructureName.foo, but this technique is ineffective if we are using many different
bindings from the structure (we would need a new variable for each) or for using constructor names from the
structure in patterns. So ML allows you to write open SomeLongStructureName, which provides “direct”
access (you can just write foo) to any bindings in the module that are mentioned in the module’s signature.
The scope of an open is the rest of the enclosing structure (or the rest of the program at top-level).

A common use of open is to write succinct testing code for a module outside the module itself. Other uses
of open are often frowned upon because it may introduce unexpected shadowing, especially since different
modules may reuse binding names. For example, a list module and a tree module may both have functions
named map.

Signatures

So far, structures are providing just namespace management, a way to avoid different bindings in different
parts of the program from shadowing each other. Namespace management is very useful, but not very
interesting. Much more interesting is giving structures signatures, which are types for modules. They let us
provide strict interfaces that code outside the module must obey. ML has several ways to do this with subtly
different syntax and semantics; we just show one way to write down an explicit signature for a module. Here
is an example signature definition and structure definition that says the structure MyMathLib must have the
signature MATHLIB:

signature MATHLIB =

sig

val fact : int -> int
val half_pi : real

val doubler : int -> int
end

structure MyMathLib :> MATHLIB =
struct
fun fact x =

if x=0

then 1

else x * fact (x - 1)

val half_pi = Math.pi / 2.0

fun doubler y =y + y
end

Because of the :> MATHLIB, the structure MyMathLib will type-check only if it actually provides everything the
signature MATHLIB claims it does and with the right types. Signatures can also contain datatype, exception,



and type bindings. Because we check the signature when we compile MyMathLib, we can use this information
when we check any code that uses MyMathLib. In other words, we can just check clients assuming that the
signature is correct.

Hiding Things

Before learning how to use ML modules to hide implementation details from clients, let’s remember that
separating an interface from an implementation is probably the most important strategy for building correct,
robust, reusable programs. Moreover, we can already use functions to hide implementations in various ways.
For example, all 3 of these functions double their argument, and clients (i.e., callers) would have no way to
tell if we replaced one of the functions with a different one:

fun doublel x = x + x
fun double2 x = x * 2
val y = 2

fun double3 x = x * y

Another feature we use for hiding implementations is defining functions locally inside other functions. We
can later change, remove, or add locally defined functions knowing the old versions were not relied on by any
other code. From an engineering perspective, this is a crucial separation of concerns. I can work on improving
the implementation of a function and know that I am not breaking any clients. Conversely, nothing clients
can do can break how the functions above work.

But what if you wanted to have two top-level functions that code in other modules could use and have both
of them use the same hidden functions? There are ways to do this (e.g., create a record of functions), but it
would be convenient to have some top-level functions that were “private” to the module. In ML, there is no
“private” keyword like in other languages. Instead, you use signatures that simply mention less: anything
not explicitly in a signature cannot be used from the outside. For example, if we change the signature above
to:

signature MATHLIB =
sig

val fact : int -> int
val half_pi : real
end

then client code cannot call MyMathLib.doubler. The binding simply is not in scope, so no use of it will
type-check. In general, the idea is that we can implement the module however we like and only bindings
that are explicitly listed in the signature can be called directly by clients.

Introducing our extended example

The rest of our module-system study will use as an example a small module that implements rational
numbers. While a real library would provide many more features, ours will just support creating fractions,
adding two fractions, and converting fractions to strings. Our library intends to (1) prevent denominators
of zero and (2) keep fractions in reduced form (3/2 instead of 9/6 and 4 instead of 4/1). While negative
fractions are fine, internally the library never has a negative denominator (—3/2 instead of 3/ — 2 and 3/2
instead of —3/—2). The structure below implements all these ideas, using the helper function reduce, which
itself uses gcd, for reducing a fraction.



Our module maintains invariants, as seen in the comments near the top of the code. These are properties of
fractions that all the functions both assume to be true and guarantee to keep true. If one function violates the
invariants, other functions might do the wrong thing. For example, the gcd function is incorrect for negative
arguments, but because denominators are never negative, gcd is never called with a negative argument.

structure Rationall =
struct
(* Invariant 1: all denominators > 0
Invariant 2: rationals kept in reduced form, including that
a Frac never has a denominator of 1 *)
datatype rational = Whole of int | Frac of int*int
exception BadFrac

(* gcd and reduce help keep fractions reduced,
but clients need not know about them *)
(* they _assume_ their inputs are not negative *)
fun ged (x,y) =
if x=y
then x
else if x <y
then gcd(x,y-x)
else gcd(y,x)

fun reduce r =

case r of
Whole _ =>r
| Frac(x,y) =>
if x=0

then Whole 0
else let val d = gcd(abs x,y) in (* using invariant 1 *)
if d=y
then Whole(x div d)
else Frac(x div d, y div d)
end

(* when making a frac, we ban zero denominators *)
fun make_frac (x,y) =
ify=20
then raise BadFrac
else if y < 0
then reduce(Frac("x,~y))
else reduce(Frac(x,y))

(* using math properties, both invariants hold of the result
assuming they hold of the arguments *)
fun add (r1,r2) =
case (r1,r2) of
(Whole(i),Whole(j))  => Whole(i+j)

| (Whole(i),Frac(j,k)) => Frac(j+kxi,k)

| (Frac(j,k),Whole(i)) => Frac(j+k*i,k)

| (Frac(a,b),Frac(c,d)) => reduce (Frac(axd + bxc, bx*d))



(* given invariant, prints in reduced form *)
fun toString r =

case r of
Whole i => Int.toString i
| Frac(a,b) => (Int.toString a) ~ "/" ~ (Int.toString b)

end

Signatures for Our Example

Let us now try to give our example module a signature such that clients can use it but not violate its
invariants.

Since reduce and gcd are helper functions that we do not want clients to rely on or misuse, one natural
signature would be as follows:

signature RATIONAL_A =

sig

datatype rational = Frac of int * int | Whole of int
exception BadFrac

val make_frac : int * int -> ratiomal

val add : rational * ratiomal -> ratiomnal

val toString : rational -> string

end

To use this signature to hide gcd and reduce, we can just change the first line of the structure definition
above to structure Rationall :> RATIONAL_A.

While this approach ensures clients do not call gcd or reduce directly (since they “do not exist” outside the
module), this is not enough to ensure the bindings in the module are used correctly. What “correct” means
for a module depends on the specification for the module (not the definition of the ML language), so let’s
be more specific about some of the desired properties of our library for rational numbers:

e Property: toString always returns a string representation in reduced form
e Property: No code goes into an infinite loop
e Property: No code divides by zero
e Property: There are no fractions with denominators of 0
The properties are externally visible; they are what we promise clients. In contrast, the invariants are

internal; they are facts about the implementation that help ensure the properties. The code above maintains
the invariants and relies on them in certain places to ensure the properties, notably:

e gcd will violate the properties if called with an arguments < 0, but since we know denominators are
> 0, reduce can pass denominators to gcd without concern.

e toString and most cases of add do not need to call reduce because they can assume their arguments
are already in reduced form.



e add uses the property of mathematics that the product of two positive numbers is positive, so we know
a non-positive denominator is not introduced.

Unfortunately, under signature RATIONAL_A, clients must still be trusted not to break the properties and in-
variants! Because the signature exposed the definition of the datatype binding, the ML type system will not
prevent clients from using the constructors Frac and Whole directly, bypassing all our work to establish and
preserve the invariants. Clients could make “bad” fractions like Rational .Frac(1,0), Rational.Frac(3,72),
or Rational.Frac(9,6), any of which could then end up causing gcd or toString to misbehave according
to our specification. While we may have intended for the client only to use make_frac, add, and toString,
our signature allows more.

A natural reaction would be to hide the datatype binding by removing the line

datatype rational = Frac of int * int | Whole of int. While this is the right intuition, the result-
ing signature makes no sense and would be rejected: it repeatedly mentions a type rational that is not
known to exist. What we want to say instead is that there is a type rational but clients cannot know
anything about what the type is other than it exists. In a signature, we can do just that with an abstract
type, as this signature shows:

signature RATIONAL_B =

sig

type rational (* type now abstract *)
exception BadFrac

val make_frac : int * int -> ratiomal
val add : rational * rational -> ratiomnal
val toString : rational -> string

end

(Of course, we also have to change the first line of the structure definition to use this signature instead. That
is always true, so we will stop mentioning it.)

This new feature of abstract types, which makes sense only in signatures, is exactly what we want. It lets
our module define operations over a type without revealing the implementation of that type. The syntax is
just to give a type binding without a definition. The implementation of the module is unchanged; we are
simply changing how much information clients have.

Now, how can clients make rationals? Well, the first one will have to be made with make_frac. After that,
more rationals can be made with make_frac or add. There is no other way, so thanks to the way we wrote
make_frac and add, all rationals will always be in reduced form with a positive denominator.

What RATIONAL_B took away from clients compared to RATIONAL_A is the constructors Frac and Whole. So
clients cannot create rationals directly and they cannot pattern-match on rationals. They have no idea how
they are represented internally. They do not even know rational is implemented as a datatype.

Abstract types are a Really Big Deal in programming.

A Cute Twist: Expose the Whole function

By making the rational type abstract, we took away from clients the Frac and Whole constructors. While
this was crucial for ensuring clients could not create a fraction that was not reduced or had a non-positive
denominator, only the Frac constructor was problematic. Since allowing clients to create whole numbers
directly cannot violate our specification, we could add a function like:

fun make_whole x = Whole x



to our structure and val make_whole : int -> rational to our signature. But this is unnecessary function
wrapping; a shorter implementation would be:

val make_whole = Whole

and of course clients cannot tell which implementation of make_whole we are using. But why create a new
binding make_whole that is just the same thing as Whole? Instead, we could just export the constructor as
a function with this signature and no changes or additions to our structure:

signature RATIONAL_C =

sig

type rational (* type still abstract *)

exception BadFrac

val Whole : int -> rational (* client knows only that Whole is a function *)
val make_frac : int * int -> ratiomal

val add : rational * rational -> rational

val toString : rational -> string

end

This signature tells clients there is a function bound to Whole that takes an int and produces a rational.
That is correct: this binding is one of the things the datatype binding in the structure creates. So we are
exposing part of what the datatype binding provides: that rational is a type and that Whole is bound to
a function. We are still hiding the rest of what the datatype binding provides: the Frac constructor and
pattern-matching with Frac and Whole.

Rules for Signature Matching

So far, our discussion of whether a structure “should type-check” given a particular signature has been rather
informal. Let us now enumerate more precise rules for what it means for a structure to match a signature.
(This terminology has nothing to do with pattern-matching.) If a structure does not match a signature
assigned to it, then the module does not type-check. A structure Name matches a signature BLAH if:

e For every val-binding in BLAH, Name must have a binding with that type or a more general type (e.g.,
the implementation can be polymorphic even if the signature says it is not — see below for an example).
This binding could be provided via a val-binding, a fun-binding, or a datatype-binding.

e For every non-abstract type-binding in BLAH, Name must have the same type binding.

e For every abstract type-binding in BLAH, Name must have some binding that creates that type (either
a datatype binding or a type synonym).

Notice that Name can have any additional bindings that are not in the signature.

Equivalent Implementations

Given our property- and invariant-preserving signatures RATIONAL_B and RATIONAL_C, we know clients cannot
rely on any helper functions or the actual representation of rationals as defined in the module. So we could
replace the implementation with any equivalent implementation that had the same properties: as long as



any call to the toString binding in the module produced the same result, clients could never tell. This
is another essential software-development task: improving/changing a library in a way that does not break
clients. Knowing clients obey an abstraction boundary, as enforced by ML’s signatures, is invaluable.

As a simple example, we could make gcd a local function defined inside of reduce and know that no client
will fail to work since they could not rely on gecd’s existence. More interestingly, let’s change one of the
invariants of our structure. Let’s mot keep rationals in reduced form. Instead, let’s just reduce a rational
right before we convert it to a string. This simplifies make_frac and add, while complicating toString,
which is now the only function that needs reduce. Here is the whole structure, which would still match
signatures RATIONAL_A, RATIONAL_B, or RATIONAL_C:

structure Rational2 :> RATIONAL_A (* or B or C *) =
struct
datatype rational = Whole of int | Frac of int*int
exception BadFrac

fun make_frac (x,y) =
if y = 0
then raise BadFrac
else if y < O
then Frac(“x,~y)
else Frac(x,y)

fun add (r1,r2) =
case (r1,r2) of
(Whole(i) ,Whole(j))  => Whole(i+j)
| (Whole(i),Frac(j,k)) => Frac(j+k*i,k)
| (Frac(j,k),Whole(i)) => Frac(j+k*i,k)
| (Frac(a,b),Frac(c,d)) => Frac(a*d + b*c, bxd)

fun toString r =
let fun gecd (x,y) =
if x=y
then x
else if x <y
then gcd(x,y-x)
else gcd(y,x)

fun reduce r =

case r of
Whole _ =>r
| Frac(x,y) =>
if x=0
then Whole O
else
let val d = gcd(abs x,y) in
if d=y
then Whole(x div d)
else Frac(x div d, y div d)
end

in
case reduce r of



Whole i  => Int.toString i
| Frac(a,b) => (Int.toString a) ~ "/" ~ (Int.toString b)
end
end

If we give Rationall and Rational2 the signature RATIONAL_A, both will type-check, but clients can
still distinguish them. For example, Rationall.toString(Rationall.Frac(21,3)) produces "21/3", but
Rational2.toString(Rational2.Frac(21,3)) produces "7". But if we give Rationall and Rational2
the signature RATIONAL_B or RATIONAL_C, then the structures are equivalent for any possible client. This
is why it is important to use restrictive signatures like RATIONAL_B to begin with: so you can change the
structure later without checking all the clients.

While our two structures so far maintain different invariants, they do use the same definition for the type
rational. This is not necessary with signatures RATIONAL_B or RATIONAL_C; a different structure having
these signatures could implement the type differently. For example, suppose we realize that special-casing
whole-numbers internally is more trouble than it is worth. We could instead just use int*int and define
this structure:

structure Rational3 :> RATIONAL_B (x or C *)=
struct

type rational = int*int

exception BadFrac

fun make_frac (x,y) =
if y = 0
then raise BadFrac
else if y < 0O
then ("x,7y)
else (x,y)

fun Whole i = (i,1)
fun add ((a,b),(c,d)) = (axd + cx*b, bxd)

fun toString (x,y) =
if x=0
then "O"
else
let fun gecd (x,y) =
if x=y
then x
else if x <y
then gcd(x,y-x)
else gcd(y,x)
val d = gcd (abs x,y)
val num = x div d
val denom = y div d
in
Int.toString num ~ (if denom=1
then ""
else "/" = (Int.toString denom))
end
end



(This structure takes the Rational2 approach of having toString reduce fractions, but that issue is largely
orthogonal from the definition of rational.)

Notice that this structure provides everything RATIONAL_B requires. The function make_frac is interesting
in that it takes an int*int and return an int*int, but clients do not know the actual return type, only
the abstract type rational. And while giving it an argument type of rational in the signature would
match, it would make the module useless since clients would not be able to create a value of type rational.
Nonetheless, clients cannot pass just any int*int to add or toString; they must pass something that they
know has type rational. As with our other structures, that means rationals are created only by make_frac
and add, which enforces all our invariants.

Our structure does not match RATIONAL_A since it does not provide rational as a datatype with constructors
Frac and Whole.

Our structure does match signature RATIONAL_C because we explicitly added a function Whole of the right
type. No client can distinguish our “real function” from the previous structures’ use of the Whole constructor
as a function.

The fact that fun Whole i = (i,1) matches val Whole : int -> rational is interesting. The type of

Whole in the module is actually polymorphic: ’a -> ’a * int. ML signature matching allows ’a -> ’a * int
tomatch int -> rational because ’a -> ’a * int is more general than int -> int * int and int -> rational
is a correct abstraction of int -> int * int. Less formally, the fact that Whole has a polymorphic type

inside the module does not mean the signature has to give it a polymorphic type outside the module.

And in fact it cannot while using the abstract type since Whole cannot have the type ’a -> int * int or

’a -> rational.

Different modules define different types

While we have defined different structures (e.g., Rationall, Rational2, and Rational3) with the same
signature (e.g., RATIONAL_B), that does not mean that the bindings from the different structures can be used
with each other. For example, Rationall.toString(Rational2.make_frac(2,3)) will not type-check,
which is a good thing since it would print an unreduced fraction. The reason it does not type-check is
that Rational2.rational and Rationall.rational are different types. They were not created by the
same datatype binding even though they happen to look identical. Moreover, outside the module we do
not know they look identical. Indeed, Rational3.toString(Rational2.make_frac(2,3)) really needs not
to type-check since Rational3.toString expects an int*int but Rational2.make_frac(2,3)) returns a
value made out of the Rational2.Frac constructor.

What is Type Inference?

While we have been using ML type inference for a while now, we have not studied it carefully. We will first
carefully define what type inference is and then see via several examples how ML type inference works.

Java, C, and ML are all examples of statically typed languages, meaning every binding has a type that is
determined “at compile-time,” i.e., before any part of the program is run. The type-checker is a compile-time
procedure that either accepts or rejects a program. By contrast, Racket, Ruby, and Python are dynamically
typed languages, meaning the type of a binding is not determined ahead of time and computations like binding
42 to x and then treating x as a string result in run-time errors. After we do some programming with Racket,
we will compare the advantages and disadvantages of static versus dynamic typing as a significant course
topic.
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Unlike Java and C, ML is implicitly typed, meaning programmers rarely need to write down the types of
bindings. This is often convenient (though some disagree as to whether it makes code easier or harder
to read), but in no way changes the fact that ML is statically typed. Rather, the type-checker has to be
more sophisticated because it must infer (i.e., figure out) what the type annotations “would have been” had
programmers written all of them. In principle, type inference and type checking could be separate steps (the
inferencer could do its part and the checker could see if the result should type-check), but in practice they
are often merged into “the type-checker.” Note that a correct type-inferencer must find a solution to what
all the types should be whenever such a solution exists, else it must reject the program.

Whether type inference for a particular programming language is easy, difficult, or impossible is often not
obvious. It is mot proportional to how permissive the type system is. For example, the “extreme” type
systems that “accept everything” and “accept nothing” are both very easy to do inference for. When we
say type inference may be impossible, we mean this in the technical sense of undecidability, like the famous
halting problem. We mean there are type systems for which no computer program can implement type
inference such that (1) the inference process always terminates, (2) the inference process always succeeds if
inference is possible, and (3) the inference process always fails if inference is not possible.

Fortunately, ML was rather cleverly designed so that type inference can be performed by a fairly straight-
forward and elegant algorithm. While there are programs for which inference is intractably slow, programs
people write in practice never cause such behavior. We will demonstrate key aspects of the algorithm for
ML type inference with a few examples. This will give you a sense that type inference is not “magic.” In
order to move on to other course topics, we will not describe the full algorithm or write code to implement
it.

ML type inference ends up intertwined with parametric polymorphism — when the inferencer determines a
function’s argument or result “could be anything” the resulting type uses ’a, ’b, etc. But type inference
and polymorphism are entirely separate concepts: a language could have one or the other. For example,
Java has generics but no inference for method argument /result types.

Overview of ML Type Inference

Here is an overview of how ML type inference works (more examples to follow):

e It determines the types of bindings in order, using the types of earlier bindings to infer the types of
later ones. This is why you cannot use later bindings in a file. (When you need to, you use mutual
recursion and type inference determines the types of all the mutually recursive bindings together.
Mutual recursion is covered later in this unit.)

e For each val or fun binding, it analyzes the binding to determine necessary facts about its type. For
example, if we see the expression x+1, we conclude that x must have type int. We gather similar facts
for function calls, pattern-matches, etc.

o Afterward, use type variables (e.g., ’a) for any unconstrained types in function arguments or results.

e (Enforce the value restriction — only variables and values can have polymorphic types, as discussed
later.)

The amazing fact about the ML type system is that “going in order” this way never causes us to reject a
program that could type-check nor do we ever accept a program we should not. So explicit type annotations
really are optional unless you use features like #1. (The problem with #1 is that it does not give enough
information for type inference to know what other fields the tuple/record should have, and the ML type
system requires knowing the exact number of fields and all the fields’ names.)
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Here is an initial, very simple example:

val x = 42
fun f(y,z,w) = if y then z+x else 0

Type inference first gives x type int since 42 has type int. Then it moves on to infer the type for £. Next
we will study, via other examples, a more step-by-step procedure, but here let us just list the key facts:

e y must have type bool because we test it in a conditional.

e z must have type int because we add it to something we already determined has type int.

e w can have any type because it is never used.

e f must return an int because its body is a conditional where both branches return an int. (If they
disagreed, type-checking would fail.)

So the type of £ must be bool * int * ’a -> int.

More Thorough Examples of ML Type Inference

We will now work through a few examples step-by-step, generating all the facts that the type-inference
algorithm needs. Note that humans doing type inference “in their head” often take shortcuts just like
humans doing arithmetic in their head, but the point is there is a general algorithm that methodically goes
through the code gathering constraints and putting them together to get the answer.

As a first example, consider inferring the type for this function:

fun f x =
let val (y,z) = x in
(abs y) + z
end

Here is how we can infer the type:
e Looking at the first line, £ must have type T1->T2 for some types T1 and T2 and in the function body
f has this type and x has type T1.

e Looking at the val-binding, x must be a pair type (else the pattern-match makes no sense), so in fact
T1=T3*T4 for some T3 and T4, and y has type T3 and z has type T4.

e Looking at the addition expression, we know from the context that abs has type int->int, so y having
type T3 means T3=int. Similarly, since abs y has type int, the other argument to + must have type
int, so z having type T4 means T4=int.

e Since the type of the addition expression is int, the type of the let-expression is int. And since the
type of the let-expression is int, the return type of f is int, i.e., T2=int.

Putting all these constraints together, T1=int*int (since T1=T3*T4) and T2=int, so f has type int*int->int.

Next example:
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fun sum xs =
case xs of
10=>0

| x::x8? => x + (sum xs’)

e From the first line, there exists types T1 and T2 such that sum has type T1->T2 and xs has type T1.

e Looking at the case-expression, xs must have a type that is compatible with all of the patterns. Looking
at the patterns, both of them match any list, since they are built from list constructors (in the x: :xs’
case the subpatterns match anything of any type). So since xs has type T1, in fact T1=T3 list from
some type T3.

e Looking at the right-hand sides of the case branches, we know they must have the same type as each
other and this type is T2. Since 0 has type int, T2=int.

e Looking at the second case branch, we type-check it in a context where x and xs’ are available. Since
we are matching the pattern x::xs’ against a T3 list, it must be that x has type T3 and xs’ has
type T3 list.

e Now looking at the right-hand side, we add x, so in fact T3=int. Moreover, the recursive call type-
checks because xs’ has type T3 list and T3 1list=T1 and sum has type T1->T2. Finally, since T2=int,
adding sum xs’ type-checks.

Putting everything together, we get sum has type int list -> int.

Notice that before we got to sum xs’ we had already inferred everything, but we still have to check that types
are used consistently and reject otherwise. For example, if we had written sum x, that cannot type-check —
it is inconsistent with previous facts. Let us see this more thoroughly to see what happens:

fun broken_sum xs =
case xs of
0=>0
| x::x8” => x + (broken_sum x)

e Type inference for broken_sum proceeds largely the same as for sum. The first four bullets from the
previous example all apply, giving broken_sum type T3 list ->int, x3 type T3 list, x type T3, and
xs’ type T3 list. Moreover, T3=int.

e We depart from the correct sum implementation with the call broken_sum x. For this call to type-
check, x must have the same type as broken_sum’s parameter, or in other words, T1=T3. However, we
know that T1=T3 list, so this new constraint T1=T3 actually generates a contradiction: T3=T3 list.
If we want to be more concrete, we can use our knowledge that T3=int to rewrite this as int=int list.
Looking at the definition of broken_sum it should be obvious that this is exactly the problem: we tried
to use x as an int and as an int list.

When your ML program does not type-check, the type-checker reports the expression where it discovered
a contradiction and what types were involved in that contradiction. While sometimes this information is
helpful, other times the actual problem is with a different expression, but the type-checker did not reach a
contradiction until later.
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Examples with Polymorphic Types

Our remaining examples will infer polymorphic types. All we do is follow the same procedure we did above,
but when we are done, we will have some parts of the function’s type that are still unconstrained. For each
Ti that “can be anything” we use a type variable (’a, ’b, etc.).

fun length xs =
case xs of
[1 =0
| x::xs’ => 1 + (length xs’)

Type inference proceeds much like with sum. We end up determining:

e length has type T1->T2.

xs has type T1.

T1=T3 list (due to the pattern-match)

T2=int because 0 can be the result of a call to length.

x has type T3 and xs’ has type T3 list.

The recursive call length xs’ type-checks because xs’ has type T3 1list, which is T1, the argument
type of length. And we can add the result because T2=int.

So we have all the same constraints as for sum, except we do not have T3=int. In fact, T3 can be anything
and length will type-check. So type inference recognizes that when it is all done, it has length with type
T3 list -> int and T3 can be anything. So we end up with the type >a 1list -> int, as expected. Again
the rule is simple: for each Ti in the final result that cannot be constrained, use a type variable.

A second example:
fun compose (f,g) = fn x => £ (g x)

e Since the argument to compose must be a pair (from the pattern used for its argument), compose has
type T1*T2->T3, £ has type T1 and g has type T2.

Since compose returns a function, T3 is some T4->T5 where in that function’s body, x has type T4.

So g must have type T4->T6 for some T6, i.e., T2=T4->T6.

e And f must have type T6->T7 for some T7, i.e., T1=T6->T7.

e But the result of £ is the result of the function returned by compose, so T7=T5 and so T1=T6->T5.
Putting together T1=T6->T5 and T2=T4->T6 and T3=T4->T5 we have a type for compose of
(T6->T5)*(T4->T6) -> (T4->T5). There is nothing else to constrain the types T4, T5, and T6, so we

replace them consistently to end up with (?a->’b)*(’c->’a) -> (’c->’b) as expected (and the last set
of parentheses are optional, but that is just syntax).

Here is a simpler example that also has multiple type variables:
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fun f (x,y,z) =
if true
then (x,y,2z)
else (y,x,z)

e The first line requires that £ has type T1*T2+T3 -> T4, x has type T1, y has type T2, and z has type
T3.

e The two branches of the conditional must have the same type and this is the return type of the function
T4. Therefore, T4A=T1*T2+T3 and T4=T2*T1*T3. This constraint requires T1=T2.

Putting together these constraints (and no others), £ will type-check with type T1¥T1+T3 -> T1*T1*T3 for
any types T1 and T3. So replacing each type consistently with a type variable, we get >ax’a*’b -> ’a*’a*’b,
which is correct: x and y must have the same type, but z can (but need not) have a different type. Notice
that the type-checker always requires both branches of a conditional to type-check with the same type, even
though here we know which branch will be evaluated.

Optional: The Value Restriction

As described so far in this unit, the ML type system is unsound, meaning that it would accept programs
that when run could have values of the wrong types, such as putting an int where we expect a string. The
problem results from a combination of polymorphic types and mutable references, and the fix is a special
restriction to the type system called the value restriction.

This is an example program that demonstrates the problem:

val r = ref NONE (* ’a option ref *)
val _ = r := SOME "hi" (* instantiate ’a with string *)
val i = 1 + valOf(!r) (x instantiate ’a with int *)

Straightforward use of the rules for type checking/inference would accept this program even though we
should not — we end up trying to add 1 to "hi". Yet everything seems to type-check given the types for the
functions/operators ref (’a -> ’a ref), := (a ref * ’a -> unit), and ! (’a ref -> ’a).

To restore soundness, we need a stricter type system that does not let this program type-check. The choice
ML made is to prevent the first line from having a polymorphic type. Therefore, the second and third lines
will not type-check because they will not be able to instantiate an ’a with string or int. In general, ML
will give a variable in a val-binding a polymorphic type only if the expression in the val-binding is a value
or a variable. This is called the value restriction. In our example, ref NONE is a call to the function ref.
Function calls are not variables or values. So we get a warning and r is given a type ?7X1 option ref where
7X1 is a “dummy type,” not a type variable. This makes r not useful and the later lines do not type-check.
It is not at all obvious that this restriction suffices to make the type system sound, but in fact it is sufficient.

For r above, we can use the expression ref NONE, but we have to use a type annotation to give r a non-
polymorphic type, such as int option ref. Whatever we pick, one of the next two lines will not type-check.

As we saw previously when studying partial application, the value restriction is occasionally burdensome
even when it is not a problem because we are not using mutation. We saw that this binding falls victim to
the value-restriction and is not made polymorphic:

val pairWithOne = List.map (fn x => (x,1))
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We saw multiple workarounds. One is to use a function binding, even though without the value restriction it
would be unnecessary function wrapping. This function has the desired type a list -> (’a * int) list:

fun pairWithOne xs = List.map (fn x => (x,1)) xs

One might wonder why we cannot enforce the value restriction only for references (where we need it) and
not for immutable types like lists. The answer is the ML type-checker cannot always know which types are
really references and which are not. In the code below, we need to enforce the value restriction on the last
line, because *a foo and ’a ref are the same type.

type ’a foo = ’a ref
val £ : ’a -> ’a foo = ref
val r = £ NONE

Because of ML’s module system, the type-checker does not always know the definition of type synonyms
(recall this is a good thing). So to be safe, it enforces the value restriction for all types.

Optional: Some Things that Make Type Inference More Difficult

Now that we have seen how ML type inference works, we can make two interesting observations:

e Inference would be more difficult if ML had subtyping (e.g., if every triple could also be a pair) because
we would not be able to conclude things like, “T3=T1*T2” since the equals would be overly restrictive.
We would instead need constraints indicating that T3 is a tuple with at least two fields. Depending on
various details, this can be done, but type inference is more difficult and the results are more difficult
to understand.

e Inference would be more difficult if ML did not have parametric polymorphism since we would have to
pick some type for functions like length and compose and that could depend on how they are used.

Mutual Recursion

We have seen many examples of recursive functions and many examples of functions using other functions
as helper functions, but what if we need a function f to call g and g to call £7 That can certainly be useful,
but ML’s rule that bindings can only use earlier bindings makes it more difficult — which should come first,
forg?

It turns out ML has special support for mutual recursion using the keyword and and putting the mutually
recursive functions next to each other. Similarly, we can have mutually recursive datatype bindings. After
showing these new constructs, we will show that you can actually work around a lack of support for mutually
recursive functions by using higher-order functions, which is a useful trick in general and in particular in ML
if you do not want your mutually recursive functions next to each other.

Our first example uses mutual recursion to process an int list and return a bool. It returns true if the
list strictly alternates between 1 and 2 and ends with a 2. Of course there are many ways to implement such
a function, but our approach does a nice job of having for each “state” (such as “a 1 must come next” or
“a 2 must come next”) a function. In general, many problems in computer science can be modeled by such
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finite state machines, and mutually recursive functions, one for each state, are an elegant way to implement
finite state machines.!

fun match xs =
let fun s_need_one xs =
case xs of

[1 => true
| 1::x8’ => s_need_two xs’
| _ => false

and s_need_two xs =
case xs of

[1 => false
| 2::xs’ => s_need_one xs’
| _ => false
in
s_need_one xs
end

(The code uses integer constants in patterns, which is an occasionally convenient ML feature, but not essential
to the example.)

In terms of syntax, we define mutually recursive functions by simply replacing the keyword fun for all
functions except the first with and. The type-checker will type-check all the functions (two in the example
above) together, allowing calls among them regardless of order.

Here is a second (silly) example that also uses two mutually recursive datatype bindings. The definition of
types t1 and t2 refer to each other, which is allowed by using and in place of datatype for the second one.
This defines two new datatypes, t1 and t2.

datatype tl = Foo of int | Bar of t2
and t2 = Baz of string | Quux of t1i

fun no_zeros_or_empty_strings_tl x =
case x of
Foo i =>1i <> 0
| Bar y => no_zeros_or_empty_strings_t2 y
and no_zeros_or_empty_strings_t2 x =
case x of
Baz s => size s > 0
| Quux y => no_zeros_or_empty_strings_tl y

Now suppose we wanted to implement the “no zeros or empty strings” functionality of the code above but
for some reason we did not want to place the functions next to each other or we were in a language with no
support for mutually recursive functions. We can write almost the same code by having the “later” function
pass itself to a version of the “earlier” function that takes a function as an argument:

fun no_zeros_or_empty_strings_t1(f,x) =
case x of
Foo i =>1i <> 0
| Bar y => f y

1Because all function calls are tail calls, the code runs in a small amount of space, just as one would expect for an imple-
mentation of a finite state machine.
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fun no_zeros_or_empty_string_t2 x =
case x of
Baz s => size s > 0
| Quux y => no_zeros_or_empty_strings_t1(no_zeros_or_empty_string_t2,y)

This is yet-another powerful idiom allowed by functions taking functions.

Motivating and Defining Equivalence

The idea that one piece of code is “equivalent” to another piece of code is fundamental to programming and
computer science. You are informally thinking about equivalence every time you simplify some code or say,
“here’s another way to do the same thing.” This kind of reasoning comes up in several common scenarios:

e Code maintenance: Can you simplify, clean up, or reorganize code without changing how the rest of
the program behaves?

e Backward compatibility: Can you add new features without changing how any of the existing features
work?

e Optimization: Can you replace code with a faster or more space-efficient implementation?

e Abstraction: Can an external client tell if I make this change to my code?

Also notice that our use of restrictive signatures in the previous lecture was largely about equivalence: by
using a stricter interface, we make more different implementations equivalent because clients cannot tell the
difference.

We want a precise definition of equivalence so that we can decide whether certain forms of code maintenance
or different implementations of signatures are actually okay. We do not want the definition to be so strict that
we cannot make changes to improve code, but we do not want the definition to be so lenient that replacing
one function with an “equivalent” one can lead to our program producing a different answer. Hopefully,
studying the concepts and theory of equivalence will improve the way you look at software written in any
language.

There are many different possible definitions that resolve this strict/lenient tension slightly differently. We
will focus on one that is useful and commonly assumed by people who design and implement programming
languages. We will also simplify the discussion by assuming that we have two implementations of a function
and we want to know if they are equivalent.

The intuition behind our definition is as follows:
e A function f is equivalent to a function g (or similarly for other pieces of code) if they produce the

same answer and have the same side-effects no matter where they are called in any program with any
arguments.

e Equivalence does not require the same running time, the same use of internal data structures, the same
helper functions, etc. All these things are considered “unobservable”, i.e., implementation details that
do not affect equivalence.

As an example, consider two very different ways of sorting a list. Provided they both produce the same final
answer for all inputs, they can still be equivalent no matter how they worked internally or whether one was
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faster. However, if they behave differently for some lists, perhaps for lists that have repeated elements, then
they would not be equivalent.

However, the discussion above was simplified by implicitly assuming the functions always return and have
no other effect besides producing their answer. To be more precise, we need that the two functions when
given the same argument in the same environment:

1. Produce the same result (if they produce a result)
2. Have the same (non)termination behavior; i.e., if one runs forever the other must run forever

Mutate the same (visible-to-clients) memory in the same way.

Ll

Do the same input/output

5. Raise the same exceptions

These requirements are all important for knowing that if we have two equivalent functions, we could replace
one with the other and no use anywhere in the program will behave differently.

Another Benefit of Side-Effect-Free Programming

One easy way to make sure two functions have the same side effects (mutating references, doing input/output,
etc.) is to have no side effects at all. This is exactly what functional languages like ML encourage. Yes, in
ML you could have a function body mutate some global reference or something, but it is generally bad style.
Other functional languages are pure functional languages meaning there really is no way to do mutation
inside (most) functions.

If you “stay functional” by not doing mutation, printing, etc. in function bodies as a matter of policy, then
callers can assume lots of equivalences they cannot otherwise. For example, can we replace (f x)+(f x)
with (f x)#*27 In general, that can be a wrong thing to do since calling £ might update some counter or
print something. In ML, that’s also possible, but far less likely as a matter of style, so we tend to have more
things be equivalent. In a purely functional language, we are guaranteed the replacement does not change
anything. The general point is that mutation really gets in your way when you try to decide if two pieces of
code are equivalent — it is a great reason to avoid mutation.

In addition to being able to remove repeated computations (like (f x) above) when maintaining side-effect-
free programs, we can also reorder expressions much more freely. For example, in Java, C, etc.:

int a = £(x);
int b = g(y);
return b - a;
might produce a different result from:

return g(y) - £(x);

since f and g can get called in a different order. Again, this is possible in ML too, but if we avoid side-effects,
it is much less likely to matter. (We might still have to worry about a different exception getting thrown
and other details, however.)

19



Standard Equivalences

Equivalence is subtle, especially when you are trying to decide if two functions are equivalent without knowing
all the places they may be called. Yet this is common, such as when you are writing a library that unknown
clients may use. We now consider several situations where equivalence is guaranteed in any situation, so
these are good rules of thumb and are good reminders of how functions and closures work.

First, recall the various forms of syntactic sugar we have learned. We can always use or not use syntactic
sugar in a function body and get an equivalent function. If we couldn’t, then the construct we are using is
not actually syntactic sugar. For example, these definitions of £ are equivalent regardless of what g is bound
to:

fun f x = fun f x =
if x x andalso g x
then g x

else false
Notice though, that we could not necessarily replace x andalso g x with if g x then x else falseifg
could have side effects or not terminate.
Second, we can change the name of a local variable (or function parameter) provided we change all uses of

it consistently. For example, these two definitions of f are equivalent:

val y = 14 val y = 14
fun f x = x+y+x fun £ z = z+y+z

But there is one rule: in choosing a new variable name, you cannot choose a variable that the function body
is already using to refer to something else. For example, if we try to replace x with y, we get fun y = y+y+y,
which is not the same as the function we started with. A previously-unused variable is never a problem.

Third, we can use or not use a helper function. For example, these two definitions of g are equivalent:

val y = 14 val y = 14
fun g z = (zt+y+z)+z fun f x = x+y+x
fun g z = (f z)+z

Again, we must take care not to change the meaning of a variable due to £ and g having potentially different
environments. For example, here the definitions of g are not equivalent:

val y = 14 val y = 14
val y = 7 fun f x = x+y+x
fun g z = (zt+y+z)+z valy =7

fun g z = (f z)+z

Fourth, as we have explained before with anonymous functions, unnecessary function wrapping is poor
style because there is a simpler equivalent way. For example, fun g y = £ y and val g = f are always
equivalent. Yet once again, there is a subtle complication. While this works when we have a variable like f
bound to the function we are calling, in the more general case we might have an expression that evaluates
to a function that we then call. Are fun g y = e y and val g = e always the same for any ezpression e?
No.

As asilly example, consider fun h() (print "hi" ; fn x => x+x) andeish(). Thenfun g y = (L) y
is a function that prints every time it is called. But val g = h() is a function that does not print — the
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program will print "hi" once when creating the binding for g. This should not be mysterious: we know that
val-bindings evaluate their right-hand sides “immediately” but function bodies are not evaluated until they
are called.

A less silly example might be if h might raise an exception rather than returning a function.

Fifth, it is almost the case that let val p = el in e2 end can be sugar for (fn p => e2) el. After all,
for any expressions el and e2 and pattern p, both pieces of code:

e Evaluate el to a value
e Match the value against the pattern p
e If it matches, evaluate e2 to a value in the environment extended by the pattern match

e Return the result of evaluating e2

Since the two pieces of code “do” the exact same thing, they must be equivalent. In Racket, this will be the
case (with different syntax). In ML, the only difference is the type-checker: The variables in p are allowed
to have polymorphic types in the let-version, but not in the anonymous-function version.

For example, consider 1let val x = (fn y => y) in (x 0, x true) end. This silly code type-checks and
returns (0,true) because x has type a->’a. But (fn x => (x 0, x true)) (fn y => y) does not type-
check because there is no non-polymorphic type we can give to x and function-arguments cannot have
polymorphic types. This is just how type-inference works in ML.

Revisiting our Definition of Equivalence

By design, our definition of equivalence ignores how much time or space a function takes to evaluate. So
two functions that always returned the same answer could be equivalent even if one took a nanosecond and
another took a million years. In some sense, this is a good thing since the definition would allow us to replace
the million-year version with the nanosecond version.

But clearly other definitions matter too. Courses in data structures and algorithms study asymptotic com-
plexity precisely so that they can distinguish some algorithms as “better” (which clearly implies some “differ-
ence”) even though the better algorithms are producing the same answers. Moreover, asymptotic complexity,
by design, ignores “constant-factor overheads” that might matter in some programs so once again this stricter
definition of equivalence may be too lenient: we might actually want to know that two implementations take
“about the same amount of time.”

None of these definitions are superior. All of them are valuable perspectives computer scientists use all the
time. Observable behavior (our definition), asymptotic complexity, and actual performance are all intellectual
tools that are used almost every day by someone working on software.
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Switching from ML to Racket

For the next couple weeks, we will use the Racket programming language (instead of ML) and the Dr-
Racket programming environment (instead of SML/NJ and Emacs). Notes on installation and basic usage
instructions are on the course website in a different document than this one.

Our focus will remain largely on key programming language constructs. We will “switch” to Racket because
some of these concepts shine better in Racket. That said, Racket and ML share many similarities: They
are both mostly functional languages (i.e., mutation exists but is discouraged) with closures, anonymous
functions, convenient support for lists, no return statements, etc. Seeing these features in a second language
should help re-enforce the underlying ideas. One moderate difference is that we will not use pattern matching
in Racket.

For us, the most important differences between Racket and ML are:

e Racket does not use a static type system. So it accepts more programs and programmers do not need



to define new types all the time, but most errors do not occur until run time.

e Racket has a very minimalist and uniform syntax.

Racket has many advanced language features, including macros, a module system quite different from ML,
quoting/eval, first-class continuations, contracts, and much more. We will have time to cover only a couple
of these topics.

The first few topics cover basic Racket programming since we need to introduce Racket before we start using it
to study more advanced concepts. We will do this quickly because (a) we have already seen a similar language
and (b) The Racket Guide, http://docs.racket-lang.org/guide/index.html, and other documentation
at http://racket-lang.org/|are excellent and free.

Racket vs. Scheme

Racket is derived from Scheme, a well-known programming language that has evolved since 1975. (Scheme
in turn is derived from LISP, which has evolved since 1958 or so.) The designers of Racket decided in 2010
that they wanted to make enough changes and additions to Scheme that it made more sense to give the
result a new name than just consider it a dialect of Scheme. The two languages remain very similar with
a short list of key differences (how the empty list is written, whether pairs built by cons are mutable, how
modules work), a longer list of minor differences, and a longer list of additions that Racket provides.

Overall, Racket is a modern language under active development that has been used to build several “real”
(whatever that means) systems. The improvements over Scheme make it a good choice for this course and
for real-world programming. However, it is more of a “moving target” — the designers do not feel as bound
to historical precedent as they try to make the language and the accompanying DrRacket system better. So
details in the course materials are more likely to become outdated.

Getting Started: Definitions, Functions, Lists (and if)

The first line of a Racket file (which is also a Racket module) should be
#lang racket

This is discussed in the installation/usage instructions for the course. These lecture notes will focus instead
on the content of the file after this line. A Racket file contains a collection of definitions.

A definition like
(define a 3)

extends the top-level environment so that a is bound to 3. Racket has very lenient rules on what characters
can appear in a variable name, and a common convention is hyphens to separate words like my-favorite-identifier.

A subsequent definition like
(define b (+ a 2))

would bind b to 5. In general, if we have (define x e) where x is a variable and e is an expression, we
evaluate e to a value and change the environment so that x is bound to that value. Other than the syntax,


http://docs.racket-lang.org/guide/index.html
http://racket-lang.org/

this should seem very familiar, although at the end of the lecture we will discuss that, unlike ML, bindings
can refer to later bindings in the file. In Racket, everything is prefix, such as the addition function used
above.

An anonymous function that takes one argument is written (lambda (x) e) where the argument is the
variable x and the body is the expression e. So this definition binds a cubing function to cubel:

(define cubel
(lambda (%)
(x x (*x x x))))

In Racket, different functions really take different numbers of arguments and it is a run-time error to call a
function with the wrong number. A three argument function would look like (lambda (x y z) e). However,
many functions can take any number of arguments. The multiplication function, *, is one of them, so we
could have written

(define cube?2
(lambda (x)
(* x x x)))

You can consult the Racket documentation to learn how to define your own variable-number-of-arguments
functions.

Unlike ML, you can use recursion with anonymous functions because the definition itself is in scope in the
function body:

(define pow
(lambda (x y)
Gf (=y 0
1
(* x (pow x (- y 1))))))

The above example also used an if-expression, which has the general syntax (if el e2 e3). It evaluates
el. If the result is #f (Racket’s constant for false), it evaluates e3 for the result. If the result is anything
else, including #t (Racket’s constant for true), it evaluates e2 for the result. Notice how this is much more
flexible type-wise than anything in ML.

There is a very common form of syntactic sugar you should use for defining functions. It does not use the
word lambda explicitly:

(define (cube3 x)
(x x x %))
(define (pow x y)
Gf (=y 0
1
(x x (pow x (- y 1)))))

This is more like ML’s fun binding, but in ML fun is not just syntactic sugar since it is necessary for
recursion.

We can use currying in Racket. After all, Racket’s first-class functions are closures like in ML and currying
is just a programming idiom.



(define pow
(lambda (x)
(lambda (y)
(if (=y O)
1
G x ((pow x) (- y 1)))))))

(define three-to-the (pow 3))
(define eightyone (three-to-the 4))
(define sixteen ((pow 2) 4))

Because Racket’s multi-argument functions really are multi-argument functions (not sugar for something
else), currying is not as common. There is no syntactic sugar for calling a curried function: we have to write
((pow 2) 4) because (pow 2 4) calls the one-argument function bound to pow with two arguments, which
is a run-time error. Racket has added sugar for defining a curried function. We could have written:

(define ((pow x) y)
(if (=y 0)
1
(x x ((pow x) (- y 1))

This is a fairly new feature and may not be widely known.

Racket has built-in lists, much like ML, and Racket programs probably use lists even more often in practice
than ML programs. We will use built-in functions for building lists, extracting parts, and seeing if lists are
empty. The function names car and cdr are a historical accident.

Primitive | Description Example

null The empty list null

cons Construct a list (cons 2 (cons 3 null))
car Get first element of a list (car some-list)

cdr Get tail of a list (cdr some-list)

null? Return #t for the empty-list and #f otherwise | (null? some-value)

Unlike Scheme, you cannot write () for the empty list. You can write ’> (), but we will prefer null.

There is also a built-in function list for building a list from any number of elements, so you can write
(1ist 2 3 4) instead of (cons 2 (cons 3 (cons 4 null))). Lists need not hold elements of the same
type, so you can create (list #t "hi" 14) without error.

Here are three examples of list-processing functions. map and append are actually provided by default, so
we would not write our own.

(define (sum xs)
(if (null? xs)
0
(+ (car xs) (sum (cdr xs)))))

(define (append xs ys)
(if (null? xs)
ys
(cons (car xs) (append (cdr xs) ys))))



(define (map f xs)
(if (null? xs)
null
(cons (f (car xs)) (map f (cdr xs)))))

Syntax and Parentheses

Ignoring a few bells and whistles, Racket has an amazingly simple syntax. Everything in the language is
either:

e Some form of atom, such as #t, #f, 34, "hi", null, etc. A particularly important form of atom is an
identifier, which can either be a variable (e.g., x or something-1like-this!) or a special form such as
define, lambda, if, and many more.

e A sequence of things in parentheses (t1 t2 ... tn).

The first thing in a sequence affects what the rest of the sequence means. For example, (define ...) means
we have a definition and the next thing can be a variable to be defined or a sequence for the sugared version
of function definitions.

If the first thing in a sequence is not a special form and the sequence is part of an expression, then we have
a function call. Many things in Racket are just functions, such as + and >.

As a minor note, Racket also allows [ and ] in place of ( and ) anywhere. As a matter of style, there are
a few places we will show where [...] is the common preferred option. Racket does not allow mismatched
parenthesis forms: ( must be matched by ) and [ by 1. DrRacket makes this easy because if you type ) to
match [, it will enter ] instead.

By “parenthesizing everything” Racket has a syntax that is unambiguous. There are never any rules to learn
about whether 1+2x3 is 1+(2%3) or (1+2)*3 and whether £ x yis (f x) yor £ (x y). It makes parsing,
converting the program text into a tree representing the program structure, trivial. Notice that XML-based
languages like HTML take the same approach. In HTML, an “open parenthesis” looks like <foo> and the
matching close-parenthesis looks like </foo>.

For some reason, HTML is only rarely criticized for being littered with parentheses but it is a common
complaint leveled against LISP, Scheme, and Racket. If you stop a programmer on the street and ask him
or her about these languages, they may well say something about “all those parentheses.” This is a bizarre
obsession: people who use these languages quickly get used to it and find the uniform syntax pleasant. For
example, it makes it very easy for the editor to indent your code properly.

From the standpoint of learning about programming languages and fundamental programming constructs,
you should recognize a strong opinion about parentheses (either for or against) as a syntactic prejudice.
While everyone is entitled to a personal opinion on syntax, one should not allow it to keep you from learning
advanced ideas that Racket does well, like hygienic macros or abstract datatypes in a dynamically typed
language or first-class continuations. An analogy would be if a student of European history did not want to
learn about the French Revolution because he or she was not attracted to people with french accents.

All that said, practical programming in Racket does require you to get your parentheses correct and Racket
differs from ML, Java, C, etc. in an important regard: Parentheses change the meaning of your program.
You cannot add or remove them because you feel like it. They are never optional or meaningless.

In expressions, (e) means evaluate e and then call the resulting function with 0 arguments. So (42) will be
a run-time error: you are treating the number 42 as a function. Similarly, ((+ 20 22)) is an error for the



salme reason.

Programmers new to Racket sometimes struggle with remembering that parentheses matter and determining
why programs fail, often at run-time, when they are misparenthesized. As an example consider these seven
definitions. The first is a correct implementation of factorial and the others are wrong:

(define (fact n) (if (=n 0) 1 (* n (fact (- n 1))))) ;
(define (fact n) (if (=n 0) (1) (* n (fact (- n 1))))) ;
(define (fact n) (if =n 01 (*x n (fact (- n 1))))) ;
(define fact (n) (if (=n 0) 1 (* n (fact (- n 1))))) ;
(define (fact n) (if (= n 1 (* n fact (- n 1)))) ;
(define (fact n) (if (=n 0) 1 (*x n ((fact) (- n 1))))) ;
(define (fact n) (if (= n 1 (n * (fact (- n 1))))) ;

~N O O WN -

Line | Error

calls 1 as a function taking no arguments

uses if with 5 subexpressions instead of 3

bad definition syntax: (n) looks like an expression followed by more stuff
calls * with a function as one of the arguments

calls fact with 0 arguments

treats n as a function and calls it with *

Dynamic Typing (and cond)

Racket does not use a static type system to reject programs before they are run. As an extreme example,
the function (lambda () (1 2)) is a perfectly fine zero-argument function that will cause an error if you
ever call it. We will spend significant time in a later lecture comparing dynamic and static typing and their
relative benefits, but for now we want to get used to dynamic typing.

As an example, suppose we want to have lists of numbers but where some of the elements can actually be
other lists that themselves contain numbers or other lists and so on, any number of levels deep. Racket
allows this directly, e.g., (1ist 2 (list 4 5) (list (list 1 2) (1list 6)) 19 (list 14 0)). In ML,
such an expression would not type-check; we would need to create our own datatype binding and use the
correct constructors in the correct places.

Now in Racket suppose we wanted to compute something over such lists. Again this is no problem. For
example, here we define a function to sum all the numbers anywhere in such a data structure:

(define (sum xs)
(if (null? xs)
0
(if (number? (car xs))
(+ (car xs) (sum (cdr xs)))
(+ (sum (car xs)) (sum (cdr xs))))))

This code simply uses the built-in predicates for empty-lists (null?) and numbers (number?). The last line
assumes (car xs) is a list; if it is not, then the function is being misused and we will get a run-time error.
We now digress to introduce the cond special form, which is better style for nested conditionals than actually
using multiple if-expressions. We can rewrite the previous function as:

(define (sum xs)



(cond [(null? xs) 0]
[(number? (car xs)) (+ (car xs) (sum (cdr xs)))]
[#t (+ (sum (car xs)) (sum (cdr xs)))]1))

A cond just has any number of parenthesized pairs of expressions, [el e2]. The first is a test; if it evaluates
to #f we skip to the next branch. Otherwise we evaluate e2 and that is the answer. As a matter of style,
your last branch should have the test #t, so you do not “fall off the bottom” in which case the result is some
sort of “void object” that you do not want to deal with.

As with if, the result of a test does not have to be #t or #f. Anything other than #f is interpreted as true
for the purpose of the test. It is sometimes bad style to exploit this feature, but it can be useful.

Now let us take dynamic typing one step further and change the specification for our sum function. Suppose
we even want to allow non-numbers and non-lists in our lists in which case we just want to “ignore” such
elements by adding 0 to the sum. If this is what you want (and it may not be — it could silently hide
mistakes in your program), then we can do that in Racket. This code will never raise an error unless the
initial argument was neither a number nor a list:

(define (sum xs)
(cond [(null? xs) 0]
[(number? xs) xs]
[(1ist? (car xs)) (+ (sum (car xs)) (sum (cdr xs)))]
[#t (sum (cdr xs))]1))

Local bindings: let, let*, letrec, local define

For all the usual reasons, we need to be able to define local variables inside functions. Like ML, there are
expression forms that we can use anywhere to do this. Unlike ML, instead of one construct for local bindings,
there are four. This variety is good: Different ones are convenient in different situations and using the most
natural one communicates to anyone reading your code something useful about how the local bindings are
related to each other. This variety will also help us learn about scope and environments rather than just
accepting that there can only be one kind of let-expression with one semantics. How variables are looked up
in an environment is a fundamental feature of a programming language.

First, there is the expression of the form

(let ([x1 eil]

[x2 e2]
[xn en])
e)
As you might expect, this creates local variables x1, x2, ... xn, bound to the results of evaluating el, e2,

..., en. and then the body e can use these variables (i.e., they are in the environment) and the result of e
is the overall result. Syntactically, notice the “extra” parentheses around the collection of bindings and the
common style of where we use square parentheses.

But the description above left one thing out: What environment do we use to evaluate el, e2, ..., en? It
turns out we use the environment from “before” the let-expression. That is, later variables do not have
earlier ones in their environment. If e3 uses x1 or x2, that would either be an error or would mean some
outer variable of the same name. This is not how ML let-expressions work. As a silly example, this function
doubles its argument:



(define (silly-double x)
(let ([x (+ x 3)]
[y (+x2)1
(+ xy -5)))

This behavior is sometimes useful. For example, to swap the meaning of x and y in some local scope you can
write (let ([x yl[ly x]) ...). More often, one uses let where this semantics versus “each binding has
the previous ones in its environment” does not matter: it communicates that the expressions are independent
of each other.

If we write 1et* in place of let, then the semantics does evaluate each binding’s expression in the environment
produced from the previous ones. This is how ML let-expressions work. It is often convenient: If we only
had “regular” let, we would have to nest let-expressions inside each other so that each later binding was
in the body of the outer let-expressions. (We would have use n nested let expressions each with 1 binding
instead of 1 let* with n bindings.) Here is an example using let*:

(define (silly-double x)
(let* ([x (+ x 3)]
[y (+x2)D)
+ xy -8)))

As indicated above, it is common style to use let instead of let* when this difference in semantics is
irrelevant.

Neither let nor let* allows recursion since the el, e2, ..., en cannot refer to the binding being defined or
any later ones. To do so, we have a third variant letrec, which lets us write:

(define (triple x)
(letrec ([y (+ x 2)]
[f (lambda (z) (+ z y w x))]
w (+ x 71
(£ -9

One typically uses letrec to define one or more (mutually) recursive functions, such as this very slow method
for taking a non-negative number mod 2:

(define (mod2 x)
(letrec
([even? (lambda (x) (if (zero? x) #t (odd? (- x 1))))]
[odd? (lambda (x) (if (zero? x) #f (even? (- x 1))))1)
(if (even? x) 0 1)))

Alternately, you can get the same behavior as letrec by using local defines, which is very common in real
Racket code and is in fact the preferred style over let-expressions. In this course, you can use it if you like
but do not have to. There are restrictions on where local defines can appear; at the beginning of a function
body is one common place where they are allowed.

(define (mod2_b x)
(define even? (lambda(x) (if (zero? x) #t (odd? (- x 1)))))
(define odd? (lambda(x) (if (zero? x) #f (even? (- x 1)))))
(if (even? x) 0 1))



We need to be careful with letrec and local definitions: They allow code to refer to variables that are
initialized later, but the expressions for each binding are still evaluated in order.

For mutually recursive functions, this is never a problem: In the examples above, the definition of even?
refers to the definition of 0dd? even though the expression bound to odd? has not yet been evaluated. This
is okay because the use in even? is in a function body, so it will not be used until after odd? has been
initialized. In contrast, this use of letrec is bad:

(define (bad-letrec x)
(letrec ([y z]
[z 13])
Gf xy 2)))

The semantics for letrec requires that the use of z for initializing y refers to the z in the letrec, but
the expression for z (the 13) has not been evaluated yet. In this situation, Racket will raise an error when
bad-letrec is called. (Prior to Racket Version 6.1, it would instead bind y to a special “undefined” object,
which almost always just had the effect of hiding a bug.)

For this class, you can decide whether to use local defines or not. The lecture materials generally will not,
choosing instead whichever of let, let*, or letrec is most convenient and communicates best. But you are
welcome to use local defines, with those “next to each other” behaving like letrec bindings.

Top-Level Definitions

A Racket file is a module with a sequence of definitions. Just as with let-expressions, it matters greatly to
the semantics what environment is used for what definitions. In ML, a file was was like an implicit let*.
In Racket, it is basically like an implicit letrec. This is convenient because it lets you order your functions
however you like in a module. For example, you do not need to place mutually recursive functions next to
each other or use special syntax. On the other hand, there are some new “gotchas” to be aware of:

e You cannot have two bindings use the same variable. This makes no sense: which one would a use of
the variable use? With letrec-like semantics, we do not have one variable shadow another one if they
are defined in the same collection of mutually-recursive bindings.

e If an earlier binding uses a later one, it needs to do so in a function body so that the later binding is
initialized by the time of the use. In Racket, the “bad” situation of using an uninitialized values causes
an error when you use the module (e.g., when you click “Run” for the file in DrRacket).

e So within a module/file, there is no top-level shadowing (you can still shadow within a definition or let-
expressions), but one module can shadow a binding in another file, such as the files implicitly included
from Racket’s standard library. For example, although it would be bad style, we could shadow the
built-in list function with our own. Our own function could even be recursive and call itself like
any other recursive function. Howewver, the behavior in the REPL is different, so do not shadow a
function with your own recursive function definition in the REPL. Defining the recursive function in
the Definitions Window and using it in the REPL still works as expected.

Bindings are Generally Mutable: set! Exists

While Racket encourages a functional-programming style with liberal use of closures and avoiding side effects,
the truth is it has assignment statements. If x is in your environment, then (set! x 13) will mutate the



binding so that x now maps to the value 13. Doing so affects all code that has this x in its environment.
Pronounced “set-bang,” the exclamation point is a convention to alert readers of your code that side effects
are occurring that may affect other code. Here is an example:

(define b 3)

(define f (lambda (x) (* 1 (+ x b))))
(define ¢ (+ b 4))

(set! b 5)

(define z (f 4))

(define w c)

After evaluating this program, z is bound to 9 because the body of the function bound to f will, when
evaluated, look up b and find 5. However, w is bound to 7 because when we evaluated (define ¢ (+ b 4)),
we found b was 3 and, as usual, the result is to bind ¢ to 7 regardless of how we got the 7. So when we
evaluate (define w c), we get 7; it is irrelevant that b has changed.

You can also use set! for local variables and the same sort of reasoning applies: you have to think about
when you look up a variable to determine what value you get. But programmers used to languages with
assignment statements are all too used to that.

Mutating top-level bindings is particularly worrisome because we may not know all the code that is using
the definition. For example, our function £ above uses b and could act strangely, even fail mysteriously, if
b is mutated to hold an unexpected value. If £ needed to defend against this possibility it would need to
avoid using b after b might change. There is a general technique in software development you should know:
If something might get mutated and you need the old value, make a copy before the mutation can occur. In
Racket, we could code this up easily enough:

(define f
(let ([b b1)
(lambda (x) (* 1 (+ x b)))))

This code makes the b in the function body refer to a local b that is initialized to the global b.

But is this as defensive as we need to be? Since * and + are just variables bound to functions, we might
want to defend against them being mutated later as well:

(define f
(let ([b b]
[+ +]
[*x *1)
(lambda (x) (* 1 (+ x b)))))

Matters would get worse if £ used other helper functions: Making local copies of variables bound to the
functions would not be enough unless those functions made copies of all their helper functions as well.

Fortunately, none of this is necessary in Racket due to a reasonable compromise: A top-level binding is not
mutable unless the module that defined it contains a set! for it. So if the file containing (define b 4) did
not have a set! that changed it, then we can rest assured that no other file will be allowed to use set! on
that binding (it will cause an error). And all the predefined functions like + and * are in a module that does
not use set! for them, so they also cannot be mutated. (In Scheme, all top-level bindings really are mutable,
but programmers typically just assume they won’t be mutated since it is too painful to assume otherwise.)
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So the previous discussion is not something that will affect most of your Racket programming, but it is
useful to understand what set! means and how to defend against mutation by making a copy. The point is
that the possibility of mutation, which Racket often avoids, makes it very difficult to write correct code.

The Truth about cons

So far, we have used cons, null, car, cdr, and null? to create and access lists. For example,
(cons 14 (cons #t null)) makes the list > (14 #t) where the quote-character shows this is printing a list
value, not indicating an (erroneous) function call to 14.

But the truth is cons just makes a pair where you get the first part with car and the second part with
cdr. Such pairs are often called cons cells in languages like Racket. So we can write (cons (+ 7 7) #t)
to produce the pair ’> (14 . #t) where the period shows that this is not a list. A list is, by convention and
according to the 1ist? predefined function, either null or a pair where the cdr (i.e., second component) is
a list. A cons cell that is not a list is often called an improper list, especially if it has nested cons cells in the
second position, e.g., (cons 1 (cons 2 (cons 3 4))) where the result prints as >(1 2 3 . 4).

Most list functions like length will give a run-time error if passed an improper list. On the other hand, the
built-in pair? primitive returns true for anything built with cons, i.e., any improper or proper list except
the empty list.

What are improper lists good for? The real point is that pairs are a generally useful way to build an each-of
type, i.e., something with multiple pieces. And in a dynamically typed language, all you need for lists are
pairs and some way to recognize the end of the list, which by convention Racket uses the null constant
(which prints as ’()) for. As a matter of style, you should use proper lists and not improper lists for
collections that could have any number of elements.

Cons cells are immutable, but there is mcons

Cons cells are immutable: When you create a cons cell, its two fields are initialized and will never change.
(This is a major difference between Racket and Scheme.) Hence we can continue to enjoy the benefits of
knowing that cons cells cannot be mutated by other code in our program. It has another somewhat subtle
advantage: The Racket implementation can be clever enough to make 1ist? a constant-time operation since
it can store with every cons cell whether or not it is a proper list when the cons cell is created. This cannot
work if cons cells are mutable because a mutation far down the list could turn it into an improper list.

It is a bit subtle to realize that cons cells really are immutable even though we have set!. Consider this

code:

(define x (cons 14 null))
(define y x)

(set! x (cons 42 null))
(define fourteen (car y))

The set! of x changes the contents of the binding of x to be a different pair; it does not alter the contents

of the old pair that x referred to. You might try to do something like (set! (car x) 27), but this is a
syntax error: set! requires a variable to assign to, not some other kind of location.

If we want mutable pairs, though, Racket is happy to oblige with a different set of primitives:

e mcons makes a mutable pair
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e mcar returns the first component of a mutable pair
e mcdr returns the second component of a mutable pair
e mpair? returns #t if given a mutable pair

e set-mcar! takes a mutable pair and an expression and changes the first component to be the result
of the expression

e set-mcdr! takes a mutable pair and an expression and changes the second component to be the result
of the expression

Since some of the powerful idioms we will study next use mutation to store previously computed results, we
will find mutable pairs useful.

Introduction to Delayed Evaluation and Thunks

A key semantic issue for a language construct is when are its subexpressions evaluated. For example, in
Racket (and similarly in ML and most but not all programming languages), given (el e2 ... en) we
evaluate the function arguments e2, ..., en once before we execute the function body and given a function
(lambda (...) ...) we do not evaluate the body until the function is called. We can contrast this rule
(“evaluate arguments in advance”) with how (if el e2 e3) works: we do not evaluate both e2 and e3.
This is why:

(define (my-if-bad x y z) (if x y 2))

is a function that cannot be used wherever you use an if-expression; the rules for evaluating subexpressions
are fundamentally different. For example, this function would never terminate since every call makes a
recursive call:

(define (factorial-wrong x)
(my-if-bad (= x 0)
1
(* x (factorial-wrong (- x 1)))))

However, we can use the fact that function bodies are not evaluated until the function gets called to make
a more useful version of an “if function”:

(define (my-if x y z) (Gf x (y) (2)))

Now wherever we would write (if el e2 e3) we could instead write (my-if el (lambda () e2) (lambda () e3)).
The body of my-if either calls the zero-argument function bound to y or the zero-argument function bound
to z. So this function is correct (for non-negative arguments):

(define (factorial x)
(my-if (= x 0)
(lambda () 1)
(lambda () (* x (factorial (- x 1))))))
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Though there is certainly no reason to wrap Racket’s “if” in this way, the general idiom of using a zero-
argument function to delay evaluation (do not evaluate the expression now, do it later when/if the zero-
argument function is called) is very powerful. As convenient terminology/jargon, when we use a zero-
argument function to delay evaluation we call the function a thunk. You can even say, “thunk the argument”
to mean “use (lambda () e) instead of e”.

Using thunks is a powerful programming idiom. It is not specific to Racket — we could have studied such
programming just as well in ML.

Lazy Evaluation with Delay and Force

Suppose we have a large computation that we know how to perform but we do not know if we need to
perform it. Other parts of the program know where the result of the computation is needed and there may
be 0, 1, or more different places. If we thunk, then we may repeat the large computation many times. But if
we do not thunk, then we will perform the large computation even if we do not need to. To get the “best of
both worlds,” we can use a programming idiom known by a few different (and perhaps technically slightly
different) names: lazy-evaluation, call-by-need, promises. The idea is to use mutation to remember the result
from the first time we use the thunk so that we do not need to use the thunk again.

One simple implementation in Racket would be:

(define (my-delay f)
(mcons #f £))

(define (my-force th)
(if (mcar th)
(mcdr th)
(begin (set-mcar! th #t)
(set-mcdr! th ((mcdr th)))
(mcdr th))))

We can create a thunk f and pass it to my-delay. This returns a pair where the first field indicates we
have not used the thunk yet. Then my-force, if it sees the thunk has not been used yet, uses it and then
uses mutation to change the pair to hold the result of using the thunk. That way, any future calls to
my-force with the same pair will not repeat the computation. Ironically, while we are using mutation in
our implementation, this idiom is quite error-prone if the thunk passed to my-delay has side effects or relies
on mutable data, since those effects will occur at most once and it may be difficult to determine when the
first call to my-force will occur.

Consider this silly example where we want to multiply the result of two expressions el and e2 using a
recursive algorithm (of course you would really just use * and this algorithm does not work if el produces
a negative number):

(define (my-mult x y)
(cond [(= x 0) 0]
[(=x 1) y]
#t (+ y (my-mult (- x 1) y))1))

Now calling (my-mult el e2) evaluates el and e2 once each and then does 0 or more additions. But what
if e1 evaluates to 0 and e2 takes a long time to compute? Then evaluating e2 was wasteful. So we could
thunk it:
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(define (my-mult x y-thunk)
(cond [(= x 0) 0]
[(= x 1) (y-thunk)]
[#t (+ (y-thunk) (my-mult (- x 1) y-thunk))]))

Now we would call (my-mult el (lambda () e2)). This works great if el evaluates to 0, fine if e1 evaluates
to 1, and terribly if el evaluates to a large number. After all, now we evaluate e2 on every recursive call.
So let’s use my-delay and my-force to get the best of both worlds:

(my-mult el (let ([x (my-delay (lambda () e2))]) (lambda () (my-force x))))

Notice we create the delayed computation once before calling my-mult, then the first time the thunk passed
to my-mult is called, my-force will evaluate e2 and remember the result for future calls to my-force x. An
alternate approach that might look simpler is to rewrite my-mult to expect a result from my-delay rather
than an arbitrary thunk:

(define (my-mult x y-promise)
(cond [(= x 0) 0]
[(= x 1) (my-force y-promise)]
[#t (+ (my-force y-promise) (my-mult (- x 1) y-promise))]))

(my-mult el (my-delay (lambda () e2)))

Some languages, most notably Haskell, use this approach for all function calls, i.e., the semantics for function
calls is different in these languages: If an argument is never used it is never evaluated, else it is evaluated
only once. This is called call-by-need whereas all the languages we will use are call-by-value (arguments are
fully evaluated before the call is made).

Streams

A stream is an infinite sequence of values. We obviously cannot create such a sequence explicitly (it would
literally take forever), but we can create code that knows how to produce the infinite sequence and other
code that knows how to ask for however much of the sequence it needs.

Streams are very common in computer science. You can view the sequence of bits produced by a synchronous
circuit as a stream, one value for each clock cycle. The circuit does not know how long it should run, but it
can produce new values forever. The UNIX pipe (cmdl | cmd2) is a stream; it causes cmdl to produce only
as much output as cmd2 needs for input. Web programs that react to things users click on web pages can
treat the user’s activities as a stream — not knowing when the next will arrive or how many there are, but
ready to respond appropriately. More generally, streams can be a convenient division of labor: one part of
the software knows how to produce successive values in the infinite sequence but does not know how many
will be needed and/or what to do with them. Another part can determine how many are needed but does
not know how to generate them.

There are many ways to code up streams; we will take the simple approach of representing a stream as a
thunk that when called produces a pair of (1) the first element in the sequence and (2) a thunk that represents
the stream for the second-through-infinity elements. Defining such thunks typically uses recursion. Here are
three examples:

(define ones (lambda () (cons 1 ones)))
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(define nats
(letrec ([f (lambda (x) (cons x (lambda () (f (+ x 1)))))1)
(lambda OO (f 1))))
(define powers-of-two
(letrec ([f (lambda (x) (cons x (lambda () (f (x x 2)))))1)
(lambda OO (£ 2))))

Given this encoding of streams and a stream s, we would get the first element via (car (s)), the sec-
ond element via (car ((cdr (s)))), the third element via (car ((cdr ((cdr (s)))))), etc. Remember
parentheses matter: (e) calls the thunk e.

We could write a higher-order function that takes a stream and a predicate-function and returns how many
stream elements are produced before the predicate-function returns true:

(define (number-until stream tester)
(letrec ([f (lambda (stream ans)
(let ([pr (stream)])
(if (tester (car pr))
ans
(f (cdr pr) (+ ans 1)))))1)
(f stream 1)))

As an example, (number-until powers-of-two (lambda (x) (= x 16))) evaluates to 4.

As a side-note, all the streams above can produce their next element given at most their previous element.
So we could use a higher-order function to abstract out the common aspects of these functions, which lets
us put the stream-creation logic in one place and the details for the particular streams in another. This is
just another example of using higher-order functions to reuse common functionality:

(define (stream-maker fn arg)
(letrec ([f (lambda (x)
(cons x (lambda () (£ (fn x arg)))))1)
(lambda () (f arg))))
(define ones (stream-maker (lambda (x y) 1) 1))
(define nats (stream-maker + 1))
(define powers-of-two (stream-maker * 2))

Memoization

An idiom related to lazy evaluation that does not actually use thunks is memoization. If a function does not
have side-effects, then if we call it multiple times with the same argument(s), we do not actually have to do
the call more than once. Instead, we can look up what the answer was the first time we called the function
with the argument(s).

Whether this is a good idea or not depends on trade-offs. Keeping old answers in a table takes space and
table lookups do take some time, but compared to reperforming expensive computations, it can be a big win.
Again, for this technique to even be correct requires that given the same arguments a function will always
return the same result and have no side-effects. So being able to use this memo table (i.e., do memoization)
is yet another advantage of avoiding mutation.

To implement memoization we do use mutation: Whenever the function is called with an argument we have
not seen before, we compute the answer and then add the result to the table (via mutation).
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As an example, let’s consider 3 versions of a function that takes an x and returns fibonacci(x). (A Fibonacci
number is a well-known definition that is useful in modeling populations and such.) A simple recursive
definition is:

(define (fibonacci x)
(if (or (=x 1) (= x 2))
1
(+ (fibomacci (- x 1))
(fibonacci (- x 2)))))

Unfortunately, this function takes exponential time to run. We might start noticing a pause for (fibonaccci 30),
and (fibonacci 40) takes a thousand times longer than that, and (fibonacci 10000) would take more
seconds than there are particles in the universe. Now, we could fix this by taking a “count up” approach
that remembers previous answers:

(define (fibonacci x)
(letrec ([f (lambda (accl acc2 y)
(if (=y x)
(+ accl acc2)
(f (+ accl acc2) accl (+y 1))
(if (or (=x 1) (= x 2))
1
(£ 113N

This takes linear time, so (fibonacci 10000) returns almost immediately (and with a very large number),
but it required a quite different approach to the problem. With memoization we can turn fibonacci into
an efficient algorithm with a technique that works for lots of algorithms. It is closely related to “dynamic
programming,” which you often learn about in advanced algorithms courses. Here is the version that does
this memoization (the assoc library function is described below):

(define fibonacci
(letrec([memo nulll
[f (lambda (x)
(let ([ans (assoc x memo)])

(if ans
(cdr ans)
(let ([new-ans (if (or (= x 1) (= x 2))
1
+ (£ (- x 1))
(f -x2900D
(begin

(set! memo (cons (cons x new-ans) memo))
new-ans)))))])
£))

It is essential that different calls to £ use the same mutable memo-table: if we create the table inside the call
to £, then each call will use a new empty table, which is pointless. But we do not put the table at top-level
just because that would be bad style since its existence should be known only to the implementation of
fibonacci.

Why does this technique work to make (fibonacci 10000) complete quickly? Because when we evaluate
(f (- x 2)) on any recursive calls, the result is already in the table, so there is no longer an exponential
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number of recursive calls. This is much more important than the fact that calling (fibonacci 10000) a
second time will complete even more quickly since the answer will be in the memo-table.

For a large table, using a list and Racket’s assoc function may be a poor choice, but it is fine for demon-
strating the concept of memoization. assoc is just a library function in Racket that takes a value and a list
of pairs and returns the first pair in the list where the car of the pair equal to the value. It returns #f if
no pair has such a car. (The reason assoc returns the pair rather than the cdr of the pair is so you can
distinguish the case where no pair matches from the case where the pair that matches has #£ in its cdr. This
is the sort of thing we would use an option for in ML.)

Macros: The Key Points

The last topic in this unit is macros, which add to the syntazr of a language by letting programmers define
their own syntactic sugar. We start with the key ideas before learning how to define macros in Racket.

A macro definition introduces some new syntax into the language. It describes how to transform the new
syntax into different syntax in the language itself. A macro system is a language (or part of a larger languages)
for defining macros. A macro use is just using one of the macros previously defined. The semantics of a macro
use is to replace the macro use with the appropriate syntax as defined by the macro definition. This process
is often called macro expansion because it is common but not required that the syntactic transformation
produces a larger amount of code.

The key point is that macro expansion happens before anything else we have learned about: before type-
checking, before compiling, before evaluation. Think of “expanding all the macros” as a pre-pass over your
entire program before anything else occurs. So macros get expanded everywhere, such as in function bodies,
both branches of conditionals, etc.

Here are 3 examples of macros one might define in Racket:
e A macro so that programmers can write (my-if el then e2 else e3) where my-if, then, and else
are keywords and this macro-expands to (if el e2 e3).

e A macro so that programmers can write (comment-out el e2) and have it transform to e2, i.e., it is
a convenient way to take an expression el out of the program (replacing it with e2) without actually
deleting anything.

e A macro so that programmers can write (my-delay e) and have it transform to (mcons #f (lambda () e)).
This is different from the my-delay function we defined earlier because the function required the caller
to pass in a thunk. Here the macro expansion does the thunk creation and the macro user should not
include an explicit thunk.

Racket has an excellent and sophisticated macro system. For precise, technical reasons, its macro system is
superior to many of the better known macro systems, notably the preprocessor in C or C++. So we can use
Racket to learn some of the pitfalls of macros in general. Below we discuss:

e How macro systems must handle issues of tokenization, parenthesization, and scope — and how Racket
handles parenthesization and scope better than C/C++

e How to define macros in Racket, such as the ones described above

e How macro definitions should be careful about the order expressions are evaluated and how many times
they are evaluated

e The key issue of variable bindings in macros and the notion of hygiene
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Tokenization, Parenthesization, and Scope

The definition of macros and macro expansion is more structured and subtle than “find-and-replace” like
one might do in a text editor or with a script you write manually to perform some string substitution in
your program. Macro expansion is different in roughly three ways.

First, consider a macro that, “replaces every use of head with car.” In macro systems, that does not mean
some variable headt would be rewritten as cart. So the implementation of macros has to at least understand
how a programming language’s text is broken into tokens (i.e., words). This notion of tokens is different in
different languages. For example, a-b would be three tokens in most languages (a variable, a subtraction,
and another variable), but is one token in Racket.

Second, we can ask if macros do or do not understand parenthesization. For example, in C/C++, if you
have a macro

#define ADD(x,y) x+y

then ADD(1,2/3)*4 gets rewritten as 1 + 2 / 3 * 4, which is not the same thing as (1 + 2/3)*4. So in
such languages, macro writers generally include lots of explicit parentheses in their macro definitions, e.g.,

#define ADD(x,y) ((x)+(y))

In Racket, macro expansion preserves the code structure so this issue is not a problem. A Racket macro
use always looks like (x ...) where x is the name of a macro and the result of the expansion “stays in the
same parentheses” (e.g., (my-if x then y else z) might expand to (if x y z)). This is an advantage
of Racket’s minimal and consistent syntax.

Third, we can ask if macro expansion happens even when creating variable bindings. If not, then local
variables can shadow macros, which is probably what you want. For example, suppose we have:

(let ([hd 0] [car 1]) hd) ; evaluates to O
(let* ([hd 0] [car 1]) hd) ; evaluates to O

If we replace car with hd, then the first expression is an error (trying to bind hd twice) and the second
expression now evaluates to 1. In Racket, macro expansion does not apply to variable definitions, i.e., the
car above is different and shadows any macro for car that happens to be in scope.

Defining Macros with define-syntax

Let’s now walk through the syntax we will use to define macros in Racket. (There have been many variations
in Racket’s predecessor Scheme over the years; this is one modern approach we will use.) Here is a macro
that lets users write (my-if el then e2 else e3) for any expressions el, e2, and e3 and have it mean
exactly (if el e2 e3):

(define-syntax my-if
(syntax-rules (then else)

[(my-if el then e2 else e3)
(if el e2 e3)]1))

e define-syntax is the special form for defining a macro.
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e my-if is the name of our macro. It adds my-if to the environment so that expressions of the form
(my-if ...) will be macro-expanded according to the syntax rules in the rest of the macro definition.

e syntax-rules is a keyword.

e The next parenthesized list (in this case (then else)) is a list of “keywords” for this macro, i.e., any
use of then or else in the body of my-if is just syntax whereas anything not in this list (and not
my-if itself) represents an arbitrary expression.

e The rest is a list of pairs: how my-if might be used and how it should be rewritten if it is used that
way.

e In this example, our list has only one option: my-if must be used in an expression of the form
(my-if el then e2 else e3) and that becomes (if el e2 e3). Otherwise an error results. Note
the rewriting occurs before any evaluation of the expressions el, €2, or e3, unlike with functions. This
is what we want for a conditional expression like my-if.

Here is a second simple example where we use a macro to “comment out” an expression. We use (comment-out el e2)
to be rewritten as e2, meaning el will never be evaluated. This might be more convenient when debugging
code than actually using comments.

(define-syntax comment-out
(syntax-rules QO
[(comment-out el e2) e2]))

Our third example is a macro my-delay so that, unlike the my-delay function defined earlier, users would
write (my-delay e) to create a promise such that my-force would evaluate e and remember the result,
rather than users writing (my-delay (lambda () e)). Only a macro, not a function, can “delay evaluation
by adding a thunk” like this because function calls always evaluate their arguments.

(define-syntax my-delay
(syntax-rules ()
[(my-delay e)
(mcons #f (lambda () e))1))

We should not create a macro version of my-force because our function version from earlier is just what
we want. Give (my-force e) we do want to evaluate e to a value, which should be an mcons-cell created
by my-delay and then perform the computation in the my-force function. Defining a macro provides no
benefit and can be error prone. Consider this awful attempt:

(define-syntax my-force
(syntax-rules ()
[(my-force e)
(if (mcar e)
(mcdr e)
(begin (set-mcar! e #t)
(set-mcdr! e ((mcdr e)))
(mcdr e)))1))

Due to macro expansion, uses of this macro will end up evaluating their argument multiple times, which can
have strange behavior if e has side effects. Macro users will not expect this. In code like:
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(let ([t (my-delay some-complicated-expression)])
(my-force t))

this does not matter since t is already bound to a value, but in code like:
(my-force (begin (print "hi") (my-delay some-complicated-expression)))

we end up printing multiple times. Remember that macro expansion copies the entire argument e everywhere
it appears in the macro definition, but we often want it to be evaluated only once. This version of the macro
does the right thing in this regard:

(define-syntax my-force
(syntax-rules ()
[(my-force e)
(let ([x el)
(if (mcar x)
(medr x)
(begin (set-mcar! x #t)
(set-mcdr! x ((mcdr x)))
(mcdr x))))1))

But, again, there is no reason to define a macro like this since a function does exactly what we need. Just
stick with:

(define (my-force th)
(if (mcar th)
(mcdr th)
(begin (set-mcar! th #t)
(set-mcdr! th ((mcdr th)))
(mcdr th))))

Variables, Macros, and Hygiene

Let’s consider a macro that doubles its argument. Note this is poor style because if you want to double an ar-
gument you should just write a function: (define (double x) (* 2 x)) or (define (double x) (+ x x))
which are equivalent to each other. But this short example will let us investigate when macro arguments are
evaluated and in what environment, so we will use it just as a poor-style example.

These two macros are not equivalent:

(define-syntax doublel
(syntax-rules QO
[(doublel e)
(x 2 e)1))
(define-syntax double2
(syntax-rules ()
[(double2 e)
(+ e e)l))
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The reason is double2 will evaluate its argument twice. So (doublel (begin (print "hi") 17)) prints
"hi" once but (double2 (begin (print "hi") 17)) prints "hi" twice. The function versions print "hi"
once, simply because, as always, function arguments are evaluated to values before the function is called.

To fix double2 without “changing the algorithm” to multiplication instead of addition, we should use a local
variable:

(define-syntax double3
(syntax-rules QO
[(double3 e)
(let ([x el)
+ x x))1)

Using local variables in macro definitions to control if/when expressions get evaluated is exactly what you
should do, but in less powerful macro languages (again, C/C++ is an easy target for derision here), local
variables in macros are typically avoided. The reason has to do with scope and something that is called
hygiene. For sake of example, consider this silly variant of double3:

(define-syntax double4
(syntax-rules ()
[(doubled e)
(let* ([zero 0]
[x eD)

(+ x x zero))]))

In Racket, this macro always works as expected, but that may/should surprise you. After all, suppose I have
this use of it:

(let ([zero 171)
(double4 zero))

If you do the syntactic rewriting as expected, you will end up with

(let ([zero 171)
(let* ([zero 0]
[x zero])
(+ x x zero)))

But this expression evaluates to 0, not to 34. The problem is a free variable at the macro-use (the zero in
(double4 zero)) ended up in the scope of a local variable in the macro definition. That is why in C/C++,
local variables in macro definitions tend to have funny names like __x_hopefully_no_conflict in the hope
that this sort of thing will not occur. In Racket, the rule for macro expansion is more sophisticated to
avoid this problem. Basically, every time a macro is used, all of its local variables are rewritten to be fresh
new variable names that do not conflict with anything else in the program. This is “one half” of what by

definition make Racket macros hygienic.

The other half has to do with free variables in the macro definition and making sure they do not wrongly
end up in the scope of some local variable where the macro is used. For example, consider this strange code
that uses double3:

(et ([+ *1)
(double3 17))
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The naive rewriting would produce:

(let ([+ *1)
(let ([x 17]1)
(+ 17 17)))

Yet this produces 172, not 34. Again, the naive rewriting is not what Racket does. Free variables in a
macro definition always refer to what was in the environment where the macro was defined, not where the
macro was used. This makes it much easier to write macros that always work as expected. Again macros in
C/C++ work like the naive rewriting.

There are situations where you do not want hygiene. For example, suppose you wanted a macro for for-loops
where the macro user specified a variable that would hold the loop-index and the macro definer made sure
that variable held the correct value on each loop iteration. Racket’s macro system has a way to do this,
which involves explicitly violating hygiene, but we will not demonstrate it here.

More macro examples

Finally, let’s consider a few more useful macro definitions, including ones that use multiple cases for how to
do the rewriting. First, here is a macro that lets you write up to two let-bindings using let* semantics but
with fewer parentheses:

(define-syntax let2
(syntax-rules Q)
[(Let2 () body)
body]
[(1et2 (var val) body)
(let ([var vall) body)]
[(1let2 (varl vall var2 val2) body)
(let ([varl valil)
(let ([var2 val2])
body))1))

Asexamples, (Let2 () 4) evaluatesto4, (let2 (x 5) (+ x 4) evaluatesto9,and (1et2 (x 5y 6) (+ x y))
evaluates to 11.

In fact, given support for recursive macros, we could redefine Racket’s let* entirely in terms of let. We
need some way to talk about “the rest of a list of syntax” and Racket’s ... gives us this:
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(define-syntax my-let*
(syntax-rules Q)
[(my-let* () body)

body]
[(my-let* ([varO valO]
[var-rest val-rest] ...)
body)
(let ([varO valOl)
(my-let* ([var-rest val-rest] ...)
body))1))

Since macros are recursive, there is nothing to prevent you from generating an infinite loop or an infinite
amount of syntax during macro expansion, i.e., before the code runs. The example above does not do this
because it recurs on a shorter list of bindings.

Finally, here is a macro for a limited form of for-loop that executes its body hi — lo times. (It is limited
because the body is not given the current iteration number.) Notice the use of a let expression to ensure we
evaluate 1o and hi exactly once but we evaluate body the correct number of times.

(define-syntax for
(syntax-rules (to do)
[(for lo to hi do body)
(let ([1 1o]

[h hi])
(letrec ([loop (lambda (it)
(if (> it h)
#t

(begin body (loop (+ it 1)))))1)
(Loop LININ
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Datatype-Programming Without Datatypes

In ML, we used datatype-bindings to define our own one-of types, including recursive datatypes for tree-
based data, such as a little language for arithmetic expressions. A datatype-binding introduces a new type
into the static environment, along with constructors for creating data of the type and pattern-matching for



using data of the type. Racket, as a dynamically typed language, has nothing directly corresponding to
datatype-bindings, but it does support the same sort of data definitions and programming.

First, some situations where we need datatypes in ML are simpler in Racket because we can just use dynamic
typing to put any kind of data anywhere we want. For example, we know in ML that lists are polymorphic
but any particular list must have elements that all have the same type. So we cannot directly build a list
that holds “string or ints.” Instead, we can define a datatype to work around this restriction, as in this
example:

datatype int_or_string = I of int | S of string

fun funny_sum xs =
case xs of
(1 =>0
| (I i)::xs’ => i + funny_sum xs’
| (S s)::xs’ => String.size s + funny_sum xs’

In Racket, no such work-around is necessary, as we can just write functions that work for lists whose elements
are numbers or strings:

(define (funny-sum xs)
(cond [(null? xs) 0]
[(number? (car xs)) (+ (car xs) (funny-sum (cdr xs)))]
[(string? (car xs)) (+ (string-length (car xs)) (funny-sum (cdr xs)))]
[#t (error "expected number or string")]))

Essential to this approach is that Racket has built-in primitives like null?, number?, and string? for testing
the type of data at run-time.

But for recursive datatypes like this ML definition for arithmetic expressions:
datatype exp = Const of int | Negate of exp | Add of exp * exp | Multiply of exp * exp

adapting our programming idioms to Racket will prove more interesting.

We will first consider an ML function that evaluates things of type exp, but this function will have a
different return type than similar functions we wrote earlier in the course. We will then consider two
different approaches for defining and using this sort of “type” for arithmetic expressions in Racket. We will
argue the second approach is better, but the first approach is important for understanding Racket in general
and the second approach in particular.

Changing How We Evaluate Our Arithmetic Expression Datatype

The most obvious function to write that takes a value of the ML datatype exp defined above is one that
evaluates the arithmetic expression and returns the result. Previously we wrote such a function like this:

fun eval_exp_old e
case e of
Const i => i
| Negate e2 => ~ (eval_exp_old e2)
| Add(el,e2) => (eval_exp_old el) + (eval_exp_old e2)
| Multiply(el,e2) => (eval_exp_old el) * (eval_exp_old e2)



The type of eval_exp_old is exp -> int. In particular, the return type is int, an ML integer that we can
then add, multiply, etc. using ML’s arithmetic operators.

For the rest of this course unit, we will instead write this sort of function to return an exp, so the ML type
will become exp -> exp. The result of a call (including recursive calls) will have the form Const i for
some int i, e.g., Const 17. Callers have to check that the kind of exp returned is indeed a Const, extract
the underlying data (in ML, using pattern-matching), and then themselves use the Const constructor as
necessary to return an exp. For our little arithmetic language, this approach leads to a moderately more
complicated program:

exception Error of string
fun eval_exp_new e =

let
fun get_int e =
case e of
Const i => i
| _ => raise (Error "expected Const result")
in

case e of
Const _ => e (* notice we return the entire exp here *)
| Negate e2 => Const (~ (get_int (eval_exp_new e2)))
| Add(el,e2) => Const ((get_int (eval_exp_new el)) + (get_int (eval_exp_new e2)))
| Multiply(el,e2) => Const ((get_int (eval_exp_new el)) * (get_int (eval_exp_new e2)))
end

This extra complication has little benefit for our simple type exp, but we are doing it for a very good
reason: Soon we will be defining little languages that have multiple kinds of results. Suppose the result of
a computation did not have to be a number because it could also be a boolean, a string, a pair, a function
closure, etc. Then our eval_exp function needs to return some sort of one-of type and using a subset of the
possibilities defined by the type exp will serve our needs well. Then a case of eval_exp like addition will
need to check that the recursive results are the right kind of value. If this check does not succeed, then the
line of get_int above that raises an exception gets evaluated (whereas for our simple example so far, the
exception will never get raised).

Recursive Datatypes Via Racket Lists

Before we can write a Racket function analogous to the ML eval_exp_new function above, we need to define
the arithmetic expressions themselves. We need a way to construct constants, negations, additions, and
multiplications, a way to test what kind of expression we have (e.g., “is it an addition?”), and a way to
access the pieces (e.g., “get the first subexpression of an addition”). In ML, the datatype binding gave us
all this.

In Racket, dynamic typing lets us just use lists to represent any kind of data, including arithmetic expressions.
One sufficient idiom is to use the first list element to indicate “what kind of thing it is” and subsequent list
elements to hold the underlying data. With this approach, we can just define our own Racket functions for
constructing, testing, and accessing:

; helper functions for constructing
(define (Const i) (list ’Const 1))
(define (Negate e) (list ’Negate e))
(define (Add el e2) (1list ’Add el e2))



(define (Multiply el e2) (list ’Multiply el e2))
; helper functions for testing

(define (Const? x) (eq? (car x) ’Const))
(define (Negate? x) (eq? (car x) ’Negate))
(define (Add? x) (eq? (car x) ’Add))

(define (Multiply? x) (eq? (car x) ’Multiply))
; helper functions for accessing

(define (Const-int e) (car (cdr e)))

(define (Negate-e e) (car (cdr e)))

(define (Add-el e) (car (cdr e)))

(define (Add-e2 e) (car (cdr (cdr e))))
(define (Multiply-el e) (car (cdr e)))

(define (Multiply-e2 e) (car (cdr (cdr e))))

(As an orthogonal note, we have not seen the syntax ’foo before. This is a Racket symbol. For our purposes
here, a symbol ’foo is a lot like a string "foo" in the sense that you can use any sequence of characters,
but symbols and strings are different kinds of things. Comparing whether two symbols are equal is a fast
operation, faster than string equality. You can compare symbols with eq? whereas you should not use eq?
for strings. We could have done this example with strings instead, using equal? instead of eq?.)

We can now write a Racket function to “evaluate” an arithmetic expression. It is directly analogous to the
ML version defined in eval_exp_new, just using our helper functions instead of datatype constructors and
pattern-matching:

(define (eval-exp e)
(cond [(Const? e) e] ; note returning an exp, not a number
[(Negate? e) (Const (- (Const-int (eval-exp (Negate-e e)))))]
[(Add? e) (let ([vl (Const-int (eval-exp (Add-el e)))]
[v2 (Const-int (eval-exp (Add-e2 e)))]1)
(Const (+ v1 v2)))]
[(Multiply? e) (let ([vl (Const-int (eval-exp (Multiply-el e)))]
[v2 (Const-int (eval-exp (Multiply-e2 e)))])
(Const (* vl v2)))]
[#t (error "eval-exp expected an exp")]))

Similarly, we can use our helper functions to define arithmetic expressions:

(define test-exp (Multiply (Negate (Add (Const 2) (Const 2))) (Const 7)))
(define test-ans (eval-exp test-exp))

Notice that test-ans is > (Const -28), not -28.

Also notice that with dynamic typing there is nothing in the program that defines “what is an arithmetic
expression.” Only our documentation and comments would indicate how arithmetic expressions are built in
terms of constants, negations, additions, and multiplications.

Recursive Datatypes Via Racket’s struct

The approach above for defining arithmetic expressions is inferior to a second approach we now introduce
using the special struct construct in Racket. A struct definition looks like:



(struct foo (bar baz quux) #:transparent)

This defines a new “struct” called foo that is like an ML constructor. It adds to the environment functions
for constructing a foo, testing if something is a foo, and extracting the fields bar, baz, and quux from a foo.
The names of these bindings are formed systematically from the constructor name foo as follows:

e foo is a function that takes three arguments and returns a value that is a foo with a bar field holding the
first argument, a baz field holding the second argument, and a quux field holding the third argument.

e f007 is a function that takes one argument and returns #t for values created by calling foo and #f for
everything else.

e foo-bar is a function that takes a foo and returns the contents of the bar field, raising an error if
passed anything other than a foo.

e foo-baz is a function that takes a foo and returns the contents of the baz field, raising an error if
passed anything other than a foo.

e foo-quux is a function that takes a foo and returns the contents of the quux field, raising an error if
passed anything other than a foo.

There are some useful attributes we can include in struct definitions to modify their behavior, two of which
we discuss here.

First, the #:transparent attribute makes the fields and accessor functions visible even outside the module
that defines the struct. From a modularity perspective this is questionable style, but it has one big advantage
when using DrRacket: It allows the REPL to print struct values with their contents rather than just as an
abstract value. For example, with our definition of struct foo, the result of (foo "hi" (+ 3 7) #f) prints
as (foo "hi" 10 #f). Without the #:transparent attribute, it would print as #<foo>, and every value
produced from a call to the foo function would print this same way. This feature becomes even more useful
for examining values built from recursive uses of structs.

Second, the #:mutable attribute makes all fields mutable by also providing mutator functions like set-foo-bar!,
set-foo-baz!, and set-foo-quux!. In short, the programmer decides when defining a struct whether the
advantages of having mutable fields outweigh the disadvantages. It is also possible to make some fields
mutable and some fields immutable.

We can use structs to define a new way to represent arithmetic expressions and a function that evaluates
such arithmetic expressions:

(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (el e2) #:transparent)
(struct multiply (el e2) #:transparent)

(define (eval-exp e)
(cond [(const? e) e] ; note returning an exp, not a number
[(negate? e) (const (- (const-int (eval-exp (negate-e e)))))]
[(add? e) (let ([vl (const-int (eval-exp (add-el e)))]
[v2 (const-int (eval-exp (add-e2 e)))])
(const (+ v1 v2)))]
[(multiply? e) (let ([vl (const-int (eval-exp (multiply-el e)))]
[v2 (const-int (eval-exp (multiply-e2 e)))])
(const (* vi v2)))]
[#t (error "eval-exp expected an exp")]))



Like with our previous approach, nothing in the language indicates how arithmetic expressions are defined
in terms of constants, negations, additions, and multiplications. The structure of this version of eval-exp is
almost identical to the previous version, just using the functions provided by the struct definitions instead
of our own list-processing functions. Defining expressions using the constructor functions is also similar:

(define test-exp (multiply (negate (add (const 2) (comst 2))) (comnst 7)))
(define test-ans (eval-exp test-exp))

Why the struct Approach is Better

Defining structs is not syntactic sugar for the list approach we took first. The key distinction is that a struct
definition creates a new type of value. Given

(struct add (el e2) #:transparent)

the function add returns things that cause add? to return #t and every other type-testing function like
number?, pair?, null?, negate?, and multiply? to return #f. Similarly, the only way to access the el
and e2 fields of an add value is with add-el1 and add-e2 — trying to use car, cdr, multiply-el, etc. is a
run-time error. (Conversely, add-el and add-e2 raise errors for anything that is not an add.)

Notice that our first approach with lists does not have these properties. Something built from the Add
function we defined is a list, so pair? returns #t for it and we can, despite it being poor style, access the
pieces directly with car and cdr.

So in addition to being more concise, our struct-based approach is superior because it catches errors sooner.
Using cdr or Multiply-e2 on an addition expression in our arithmetic language is almost surely an error,
but our list-based approach sees it as nothing more or less than accessing a list using the Racket primitives
for doing so. Similarly, nothing prevents an ill-advised client of our code from writing (1list ’Add "hello")
and yet our list-based Add? function would return #t given the result list > (Add "hello").

That said, nothing about the struct definitions as we are using them here truly enforces invariants. In
particular, we would like to ensure the el and e2 fields of any add expression hold only other arithmetic
expressions. Racket has good ways to do that, but we are not studying them here. First, Racket has a
module system that we can use to expose to clients only parts of a struct definition, so we could hide the
constructor function and expose a different function that enforces invariants (much like we did with ML’s
module system).! Second, Racket has a contract system that lets programmers define arbitrary functions to
use to check properties of struct fields, such as allowing only certain kinds of values to be in the fields.

Finally, we remark that Racket’s struct is a powerful primitive that cannot be described or defined in terms
of other things like function definitions or macro definitions. It really creates a new type of data. The feature
that the result from add causes add? to return #t but every other type-test to return #f is something that
no approach in terms of lists, functions, macros, etc. can do. Unless the language gives you a primitive for
making new types like this, any other encoding of arithmetic expressions would have to make values that
cause some other type test such as pair? or procedure? to return #t.

IMany people erroneously believe dynamically typed languages cannot enforce modularity like this. Racket’s structs, and
similar features in other languages, put the lie to this. You do not need abstract types and static typing to enforce ADTs. It
suffices to have a way to make new types and then not directly expose the constructors for these types.



Implementing a Programming Language in General

While this course is mostly about what programming-language features mean and not how they are imple-
mented, implementing a small programming language is still an invaluable experience. First, one great way
to understand the semantics of some features is to have to implement those features, which forces you to
think through all possible cases. Second, it dispels the idea that things like higher-order functions or objects
are “magic” since we can implement them in terms of simpler features. Third, many programming tasks are
analogous to implementing an interpreter for a programming language. For example, processing a structured
document like a pdf file and turning it into a rectangle of pixels for displaying is similar to taking an input
program and turning it into an answer.

We can describe a typical workflow for a language implementation as follows. First, we take a string holding
the concrete syntax of a program in the language. Typically this string would be the contents of one or
more files. The parser gives errors if this string is not syntactically well-formed, meaning the string cannot
possibly contain a program in the language due to things like misused keywords, misplaced parentheses,
etc. If there are no such errors, the parser produces a tree that represents the program. This is called the
abstract-syntax tree, or AST for short. It is a much more convenient representation for the next steps of the
language implementation. If our language includes type-checking rules or other reasons that an AST may
still not be a legal program, the type-checker will use this AST to either produce error messages or not. The
AST is then passed to the rest of the implementation.

There are basically two approaches to this rest-of-the-implementation for implementing some programming
language B. First, we could write an interpreter in another language A that takes programs in B and
produces answers. Calling such a program in A an “evaluator for B” or an “executor for B” probably makes
more sense, but “interpreter for B” has been standard terminology for decades. Second, we could write a
compiler in another language A that takes programs in B and produces equivalent programs in some other
language C (not the language C necessarily) and then uses some pre-existing implementation for C'. For
compilation, we call B the source language and C the target language. A better term than “compiler” would
be “translator” but again the term compiler is ubiquitous. For either the interpreter approach or the compiler
approach, we call A, the language in which we are writing the implementation of B, the metalanguage.

While there are many “pure” interpreters and compilers, modern systems often combine aspects of each and
use multiple levels of interpretation and translation. For example, a typical Java system compiles Java source
code into a portable intermediate format. The Java “virtual machine” can then start interpreting code in
this format but get better performance by compiling the code further to code that can execute directly on
hardware. We can think of the hardware itself as an interpreter written in transistors, yet many modern
processors actually have translators in the hardware that convert the binary instructions into smaller simpler
instructions right before they are executed. There are many variations and enhancements to even this multi-
layered story of running programs, but fundamentally each step is some combination of interpretation or
translation.

A one-sentence sermon: Interpreter versus compiler is a feature of a particular programming-language imple-
mentation, not a feature of the programming language. One of the more annoying and widespread misconcep-
tions in computer science is that there are “compiled languages” such as C and “interpreted languages” such
as Racket. This is nonsense: I can write an interpreter for C or a compiler for Racket. (In fact, DrRacket
takes a hybrid approach not unlike Java.) There is a long history of C being implemented with compilers
and functional languages being implemented with interpreters, but compilers for functional languages have
been around for decades. SML/NJ, for example, compiles each module/binding to binary code.



Implementing a Programming Language Inside Another Language

Our eval-exp function above for arithmetic expressions is a perfect example of an interpreter for a small
programming language. The language here is exactly expressions properly built from the constructors for
constant, negation, addition, and multiplication expressions. The definition of “properly” depends on the
language; here we mean constants hold numbers and negations/additions/multiplications hold other proper
subexpressions. We also need a definition of values (i.e., results) for our little language, which again is part
of the language definition. Here we mean constants, i.e., the subset of expressions built from the const
constructor. Then eval-exp is an interpreter because it is a function that takes expressions in our language
and produces values in our language according to the rules for the semantics to our language. Racket is just
the metalanguage, the “other” language in which we write our interpreter.

What happened to parsing and type-checking? In short, we skipped them. By using Racket’s constructors,
we basically wrote our programs directly in terms of abstract-syntax trees, relying on having convenient
syntax for writing trees rather than having to make up a syntax and writing a parser. That is, we wrote
programs with expressions like:

(negate (add (const 2) (const 2)))

rather than some sort of string like "= (2 + 2)".

While embedding a language like arithmetic-expressions inside another language like Racket might seem
inconvenient compared to having special syntax, it has advantages even beyond not needing to write a
parser. For example, below we will see how we can use the metalanguage (Racket in this case) to write
things that act like macros for our language.

Assumptions and Non-Assumptions About Legal ASTs

There is a subtle distinction between two kinds of “wrong” ASTs in a language like our arithmetic expression
language. To make this distinction clearer, let’s extend our language with three more kinds of expressions:

(struct const (int) #:transparent) ; int should hold a number

(struct negate (el) #:transparent) ; el should hold an expression

(struct add (el e2) #:transparent) ; el, e2 should hold expressions

(struct multiply (el e2) #:transparent) ; el, e2 should hold expressions

(struct bool (b) #:transparent) ; b should hold #t or #f

(struct if-then-else (el e2 e3) #:transparent) ; el, e2, e3 should hold expressions
(struct eq-num (el e2) #:transparent) ; el, e2 should hold expressions

The new features include booleans (either true or false), conditionals, and a construct for comparing two
numbers and returning a boolean (true if and only if the numbers are the same). Crucially, the result of
evaluating an expression in this language could now be:

e an integer, such as (const 17)

e a boolean, such as (bool true)

e non-existent because when we try to evaluate the program, we get a “run-time type error” — trying to
treat a boolean as a number or vice-versa



In other words, there are now two types of values in our language — numbers and booleans — and there are
operations that should fail if a subexpression evaluates to the wrong kind of value.

This last possibility is something an interpreter should check for and give an appropriate error message. If
evaluating some kind of expression (e.g., addition) requires the result of evaluating subexpressions to have a
certain type (e.g., a number like (const 4) and not a boolean like (bool #t)), then the interpreter should
check for this result (e.g., using const?) rather than assuming the recursive result has the right type. That
way, the error message is appropriate (e.g., “argument to addition is not a number”) rather than something
in terms of the implementation of the interpreter.

The code posted with the course materials corresponding to these notes has two full interpreters for this
language. The first does not include any of this checking while the second, better one does. Calling the first
interpreter eval-exp-wrong and the second one eval-exp, here is just the addition case for both:

; eval-exp-wrong
[(add? e)
(let ([i1 (const-int (eval-exp-wrong (add-el e)))]
[i2 (const-int (eval-exp-wrong (add-e2 e)))])
(const (+ i1 i2)))]

; eval-exp
[(add? e)
(let ([vl (eval-exp (add-el e))]
[v2 (eval-exp (add-e2 e))])
(if (and (const? v1) (const? v2))
(const (+ (comnst-int v1) (const-int v2)))
(error "add applied to non-number")))]

However, eval-exp is assuming that the expression it is evaluating is a legal AST for the language. It
can handle (add (const 2) (const 2)), which evaluates to (const 4) or (add (const 2) (bool #f)),
which encounters an error, but it does not gracefully handle (add #t #f) or (add 3 4). These are not legal
ASTs, according to the rules we have in comments, namely:

e The int field of a const should hold a Racket number.
e The b field of a bool should hold a Racket boolean.
o All other fields of expressions should hold other legal ASTs. (Yes, the definition is recursive.)

It is reasonable for an interpreter to assume it is given a legal AST, so it is okay for it to “just crash” with
a strange, implementation-dependent error message if given an illegal AST.

Interpreters for Languages With Variables Need Environments

The biggest thing missing from our arithmetic-expression language is variables. That is why we could just
have one recursive function that took an expression and returned a value. As we have known since the very
beginning of the course, since expressions can contain variables, evaluating them requires an environment
that maps variables to values. So an interpreter for a language with variables needs a recursive helper
function that takes an expression and an environment and produces a value.?

2In fact, for languages with features like mutation or exceptions, the helper function needs even more parameters.



The representation of the environment is part of the interpreter’s implementation in the metalanguage, not
part of the abstract syntax of the language. Many representations will suffice and fancy data structures that
provide fast access for commonly used variables are appropriate. But for our purposes, ignoring efficiency is
okay. Therefore, with Racket as our metalanguage, a simple association list holding pairs of strings (variable
names) and values (what the variables are bound to) can suffice.

Given an environment, the interpreter uses it differently in different cases:

e To evaluate a variable expression, it looks up the variable’s name (i.e., the string) in the environment.

e To evaluate most subexpressions, such as the subexpressions of an addition operation, the interpreter
passes to the recursive calls the same environment that was passed for evaluating the outer expression.

e To evaluate things like the body of a let-expression, the interpreter passes to the recursive call a slightly
different environment, such as the environment it was passed with one more binding (i.e., pair of string
and value) in it.

To evaluate an entire program, we just call our recursive helper function that takes an environment with the
program and a suitable initial environment, such as the empty environment, which has no bindings in it.

Implementing Closures

To implement a language with function closures and lexical scope, our interpreter needs to “remember” the
environment that “was current” when the function was defined so that it can use this environment instead
of the caller’s environment when the function is called. The “trick” to doing this is rather direct: We can
literally create a small data structure called a closure that includes the environment along with the function
itself. It is this pair (the closure) that is the result of interpreting a function. In other words, a function is not
a value, a closure is, so the evaluation of a function produces a closure that “remembers” the environment
from when we evaluated the function.

We also need to implement function calls. A call has two expressions el and e2 for what would look like
el e2 in ML or (el e2) in Racket. (We consider here one-argument functions, though the implementation
will naturally support currying for simulating multiple argument functions.) We evaluate a call as follows:

e We evaluate el using the current environment. The result should be a closure (else it is a run-time
erTor).

e We evaluate e2 using the current environment. The result will be the argument to the closure.

e We evaluate the body of the code part of the closure using the environment part of the closure

extended with the argument of the code part mapping to the argument at the call-site.

In the homework assignment connected to these course materials, there is an additional extension to the
environment for a variable that allows the closure to call itself recursively. But the key idea is the same: we
extend the environment-stored-with-the-closure to evaluate the closure’s function body.

This really is how interpreters implement closures. It is the semantics we learned when we first studied
closures, just “coded up” in an interpreter.
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Implementing Closures More Efficiently

It may seem expensive that we store the “whole current environment” in every closure. First, it is not that
expensive when environments are association lists since different environments are just extensions of each
other and we do not copy lists when we make longer lists with cons. (Recall this sharing is a big benefit of
not mutating lists, and we do not mutate environments.) Second, in practice we can save space by storing
only those parts of the environment that the function body might possibly use. We can look at the function
body and see what free variables it has (variables used in the function body whose definitions are outside
the function body) and the environment we store in the closure needs only these variables. After all, no
execution of the closure can ever need to look up a variable from the environment if the function body has
no use of the variable. Language implementations precompute the free variables of each function before
beginning evaluation. They can store the result with each function so that this set of variables is quickly
available when building a closure.

Finally, you might wonder how compilers implement closures if the target language does not itself have
closures. As part of the translation, function definitions still evaluate to closures that have two parts, code
and environment. However, we do not have an interpreter with a “current environment” whenever we get
to a variable we need to look up. So instead, we change all the functions in the program to take an extra
argument (the environment) and change all function calls to explicitly pass in this extra argument. Now when
we have a closure, the code part will have an extra argument and the caller will pass in the environment
part for this argument. The compiler then just needs to translate all uses of free variables to code that uses
the extra argument to find the right value. In practice, using good data structures for environments (like
arrays) can make these variable lookups very fast (as fast as reading a value from an array).

Defining “Macros” Via Functions in the Metalanguage

When implementing an interpreter or compiler, it is essential to keep separate what is in the language being
implemented and what is in the language used for doing the implementation (the metalanguage). For example,
eval-exp is a Racket function that takes an arithmetic-expression-language expression (or whatever language
we are implementing) and produces an arithmetic-expression-language value. So for example, an arithmetic-
expression-language expression would never include a use of eval-exp or a Racket addition expression.

But since we are writing our to-be-evaluated programs in Racket, we can use Racket helper functions to help
us create these programs. Doing so is basically defining macros for our language using Racket functions as
the macro language. Here is an example:

(define (double e) ; takes language-implemented syntax and produces language-implemented syntax
(multiply e (const 2)))

Here double is a Racket function that takes the syntax for an arithmetic expression and produces the
syntax for an arithmetic expression. Calling double produces abstract syntax in our language, much like
macro expansion. For example, (negate (double (negate (const 4)))) produces (negate (multiply
(negate (const 4)) (comnst 2))). Notice this “macro” double does not evaluate the program in any way:
we produce abstract syntax that can then be evaluated, put inside a larger program, etc.

Being able to do this is an advantage of “embedding” our little language inside the Racket metalanguage.
The same technique works regardless of the choice of metalanguage. However, this approach does not handle
issues related to variable shadowing as well as a real macro system that has hygienic macros.

Here is a different “macro” that is interesting in two ways. First the argument is a Racket list of language-
being-implemented expressions (syntax). Second, the “macro” is recursive, calling itself once for each element
in the argument list:
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(define (list-product es)
(if (null? es)
(const 1)
(multiply (car es) (list-product (cdr es)))))

ML versus Racket

Before studying the general topic of static typing and the advantages/disadvantages thereof, it is interesting
to do a more specific comparison between the two languages we have studied so far, ML and Racket. The
languages are similar in many ways, with constructs that encourage a functional style (avoiding mutation,
using first-class closures) while allowing mutation where appropriate. There are also many differences,
including very different approaches to syntax, ML’s support for pattern-matching compared to Racket’s
accessor functions for structs, Racket’s multiple variants of let-expressions, etc.

But the most widespread difference between the two languages is that ML has a static type system that
Racket does not.?

We study below precisely what a static type system is, what ML’s type system guarantees, and what the
advantages and disadvantages of static typing are. Anyone who has programmed in ML and Racket probably
already has some ideas on these topics, naturally: ML rejects lots of programs before running them by doing
type-checking and reporting errors. To do so, ML enforces certain restrictions (e.g., all elements of a list
must have the same type). As a result, ML ensures the absence of certain errors (e.g., we will never try to
pass a string to the addition operator) “at compile time.”

More interestingly, could we describe ML and its type system in terms of ideas more Racket-like and,
conversely, could we describe Racket-style programming in terms of ML? It turns out we can and that doing
so is both mind-expanding and a good precursor to subsequent topics.

First consider how a Racket programmer might view ML. Ignoring syntax differences and other issues, we
can describe ML as roughly defining a subset of Racket: Programs that run produce similar answers, but ML
rejects many more programs as illegal, i.e., not part of the language. What is the advantage of that? ML is de-
signed to reject programs that are likely bugs. Racket allows programs like (define (f y) (+ y (car y))),
but any call to £ would cause an error, so this is hardly a useful program. So it is helpful that ML rejects
this program rather than waiting until a programmer tests £. Similarly, the type system catches bugs due
to inconsistent assumptions by different parts of the program. The functions (define (g x) (+ x %))
and (define (h z) (g (coms z 2))) are both sensible by themselves, but if the g in h is bound to this
definition of g, then any call to h fails much like any call to £. On the other hand, ML rejects Racket-like
programs that are not bugs as well. For example, in this code, both the if-expression and the expression
bound to xs would not type-check but represent reasonable Racket idioms depending on circumstances:

(define (f x) (if (> x 0) #t (list 1 2)))
(define xs (list 1 #t "hi"))
(define y (f (car xs)))

So now how might an ML programmer view Racket? One view is just the reverse of the discussion above,
that Racket accepts a superset of programs, some of which are errors and some of which are not. A more
interesting view is that Racket is just ML where every expression is part of one big datatype. In this view,
the result of every computation is implicitly “wrapped” by a constructor into the one big datatype and

3There is a related language Typed Racket also available within the DrRacket system that interacts well with Racket and
many other languages — allowing you to mix files written in different languages to build applications. We will not study that
in this course, so we refer here only to the language Racket.
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primitives like + have implementations that check the “tags” of their arguments (e.g., to see if they are
numbers) and raise errors as appropriate. In more detail, it is like Racket has this one datatype binding:

datatype theType = Int of int

| String of string

| Pair of theType * theType
| Fun of theType -> theType
|

(* one constructor per built-in type *)

Then it is like when programmers write something like 42, it is smplicitly really Int 42 so that the result
of every expression has type theType. Then functions like + raise errors if both arguments do not have the
right constructor and their result is also wrapped with the right constructor if necessary. For example, we
could think of car as being:

fun car v = case v of Pair(a,b) => a | => raise ... (x give some error *)

Since this “secret pattern-matching” is not exposed to programmers, Racket also provides which-constructor
functions that programmers can use instead. For example, the primitive pair? can be viewed as:

fun pair? v = case v of Pair _ => true | _ => false

Finally, Racket’s struct definitions do one thing you cannot quite do with ML datatype bindings: They
dynamically add new constructors to a datatype.?

The fact that we can think of Racket in terms of theType suggests that anything you can do in Racket can be
done, perhaps more awkwardly, in ML: The ML programmer could just program explicitly using something
like the theType definition above.

What is Static Checking?

What is usually meant by “static checking” is anything done to reject a program after it (successfully) parses
but before it runs. If a program does not parse, we still get an error, but we call such an error a “syntax
error” or “parsing error.” In contrast, an error from static checking, typically a “type error,” would include
things like undefined variables or using a number instead of a pair. We do static checking without any
input to the program identified — it is “compile-time checking” though it is irrelevant whether the language
implementation will use a compiler or an interpreter after static checking succeeds.

What static checking is performed is part of the definition of a programming language. Different languages
can do different things; some languages do no static checking at all. Given a language with a particular
definition, you could also use other tools that do even more static checking to try to find bugs or ensure
their absence even though such tools are not part of the language definition.

The most common way to define a language’s static checking is via a type system. When we studied ML
(and when you learned Java), we gave typing rules for each language construct: Each variable had a type,
the two branches of a conditional must have the same type, etc. ML’s static checking is checking that these
rules are followed (and in ML’s case, inferring types to do so). But this is the language’s approach to static
checking (how it does it), which is different from the purpose of static checking (what it accomplishes). The
purpose is to reject programs that “make no sense” or “may try to misuse a language feature.” There are

4You can do this in ML with the exn type, but not with datatype bindings. If you could, static checking for missing
pattern-matching clauses would not be possible.
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errors a type system typically does not prevent (such as array-bounds errors) and others that a type system
cannot prevent unless given more information about what a program is supposed to do. For example, if a
program puts the branches of a conditional in the wrong order or calls + instead of *, this is still a program
just not the one intended.

For example, one purpose of ML’s type system is to prevent passing strings to arithmetic primitives like the
division operator. In contrast, Racket uses “dynamic checking” (i.e., run-time checking) by tagging each
value and having the division operator check that its arguments are numbers. The ML implementation does
not have to tag values for this purpose because it can rely on static checking. But as we will discuss below,
the trade-off is that the static checker has to reject some programs that would not actually do anything
wrong.

As ML and Racket demonstrate, the typical points at which to prevent a “bad thing” are “compile-time”
and “run-time.” However, it is worth realizing that there is really a continuum of eagerness about when we
declare something an error. Consider for sake of example something that most type systems do not prevent
statically: division-by-zero. If we have some function containing the expression (/ 3 0), when could we
cause an error:

e Keystroke-time: Adjust the editor so that one cannot even write down a division with a denominator
of 0. This is approximate because maybe we were about to write 0.33, but we were not allowed to
write the 0.

e Compile-time: As soon as we see the expression. This is approximate because maybe the context is
(if #f (/ 3 0) 42).

e Link-time: Once we see the function containing (/ 3 0) might be called from some “main” function.
This is less approximate than compile-time since some code might never be used, but we still have to
approximate what code may be called.

e Run-time: As soon as we execute the division.

e Even later: Rather than raise an error, we could just return some sort of value indicating division-by-
zero and not raise an error until that value was used for something where we needed an actual number,
like indexing into an array.

While the “even later” option might seem too permissive at first, it is exactly what floating-point computa-
tions do. (/ 3.0 0.0) produces +inf .0, which can still be computed with but cannot be converted to an
exact number. In scientific computing this is very useful to avoid lots of extra cases: maybe we do something
like take the tangent of 7/2 but only when this will end up not being used in the final answer.

Correctness: Soundness, Completeness, Undecidability

Intuitively, a static checker is correct if it prevents what it claims to prevent — otherwise, either the language
definition or the implementation of static checking needs to be fixed. But we can give a more precise
description of correctness by defining the terms soundness and completeness. For both, the definition is with
respect to some thing X we wish to prevent. For example, X could be “a program looks up a variable that
is not in the environment.”

A type system is sound if it never accepts a program that, when run with some input, does X.

A type system is complete if it never rejects a program that, no matter what input it is run with, will not
do X.
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A good way to understand these definitions is that soundness prevents false negatives and completeness
prevents false positives. The terms false negatives and false positives come from statistics and medicine:
Suppose there is a medical test for a disease, but it is not a perfect test. If the test does not detect the
disease but the patient actually has the disease, then this is a false negative (the test was negative, but that
is false). If the test detects the disease but the patient actually does not have the disease, then this is a false
positive (the test was positive, but that’s false). With static checking, the disease is “performs X when run
with some input” and the test is “does the program type-check?” The terms soundness and completeness
come from logic and are commonly used in the study of programming languages. A sound logic proves only
true things. A complete logic proves all true things. Here, our type system is the logic and the thing we are
trying to prove is “X cannot occur.”

In modern languages, type systems are sound (they prevent what they claim to) but not complete (they
reject programs they need not reject). Soundness is important because it lets language users and language
implementers rely on X never happening. Completeness would be nice, but hopefully it is rare in practice
that a program is rejected unnecessarily and in those cases, hopefully it is easy for the programmer to modify
the program such that it type-checks.

Type systems are not complete because for almost anything you might like to check statically, it is impossible
to implement a static checker that given any program in your language (a) always terminates, (b) is sound,
and (c) is complete. Since we have to give up one, (c¢) seems like the best option (programmers do not like
compilers that may not terminate).

The impossibility result is exactly the idea of undecidability at the heart of the study of the theory of
computation. It is an essential topic in a required course (CSE 311). Knowing what it means that nontrivial
properties of programs are undecidable is fundamental to being an educated computer scientist. The fact
that undecidability directly implies the inherent approximation (i.e., incompleteness) of static checking is
probably the most important ramification of undecidability. We simply cannot write a program that takes as
input another program in ML/Racket/Java/etc. that always correctly answers questions such as, “will this
program divide-by-zero?” “will this program treat a string as a function?” “will this program terminate?”
etc.

Weak Typing

Now suppose a type system is unsound for some property X. Then to be safe the language implementation
should still, at least in some cases, perform dynamic checks to prevent X from happening and the language
definition should allow that these checks might fail at run-time.

But an alternative is to say it is the programmer’s fault if X happens and the language definition does
not have to check. In fact, if X happens, then the running program can do anything: crash, corrupt data,
produce the wrong answer, delete files, launch a virus, or set the computer on fire. If a language has programs
where a legal implementation is allowed to set the computer on fire (even though it probably would not), we
call the language weakly typed. Languages where the behavior of buggy programs is more limited are called
strongly typed. These terms are a bit unfortunate since the correctness of the type system is only part of
the issue. After all, Racket is dynamically typed but nonetheless strongly typed. Moreover, a big source of
actual undefined and unpredictable behavior in weakly typed languages is array-bounds errors (they need
not check the bound — they can just access some other data by mistake), yet few type systems check array
bounds.

C and C++ are the well-known weakly typed languages. Why are they defined this way? In short, because
the designers do not want the language definition to force implementations to do all the dynamic checks
that would be necessary. While there is a time cost to performing checks, the bigger problem is that the
implementation has to keep around extra data (like tags on values) to do the checks and C/C++ are designed
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as lower-level languages where the programmer can expect extra “hidden fields” are not added.

An older now-much-rarer perspective in favor of weak typing is embodied by the saying “strong types for weak
minds.” The idea is that any strongly typed language is either rejecting programs statically or performing
unnecessary tests dynamically (see undecidability above), so a human should be able to “overrule” the checks
in places where he/she knows they are unnecessary. In reality, humans are extremely error-prone and we
should welcome automatic checking even if it has to err on the side of caution for us. Moreover, type systems
have gotten much more expressive over time (e.g., polymorphic) and language implementations have gotten
better at optimizing away unnecessary checks (they will just never get all of them). Meanwhile, software
has gotten very large, very complex, and relied upon by all of society. It is deeply problematic that 1 bug in
a 30-million-line operating system written in C can make the entire computer subject to security exploits.
While this is still a real problem and C the language provides little support, it is increasingly common to
use other tools to do static and/or dynamic checking with C code to try to prevent such errors.

More Flexible Primitives is a Related but Different Issue

Suppose we changed ML so that the type system accepted any expression el + e2 as long as el and e2
had some type and we changed the evaluation rules of addition to return O if one of the arguments did not
result in a number. Would this make ML a dynamically typed language? It is “more dynamic” in the sense
that the language is more lenient and some “likely” bugs are not detected as eagerly, but there is still a
type system rejecting programs — we just changed the definition of what an “illegal” operation is to allow
more additions. We could have similarly changed Racket to not give errors if + is given bad arguments. The
Racket designers choose not to do so because it is likely to mask bugs without being very useful.

Other languages make different choices that report fewer errors by extending the definition of primitive
operations to not be errors in situations like this. In addition to defining arithmetic over any kind of data,
some examples are:

e Allowing out-of-bound array accesses. For example, if arr has fewer than 10 elements, we can still
allow arr[10] by just returning a default value or arr[10]=e by making the array bigger.

e Allowing function calls with the wrong number of arguments. Extra arguments can be silently ignored.
Too few arguments can be filled in with defaults chosen by the language.

These choices are matters of language design. Giving meaning to what are likely errors is often unwise — it
masks errors and makes them more difficult to debug because the program runs long after some nonsense-
for-the-application computation occurred. On the other hand, such “more dynamic” features are used by
programmers when provided, so clearly someone is finding them useful.

For our purposes here, we just consider this a separate issue from static vs. dynamic typing. Instead of
preventing some X (e.g., calling a function with too many arguments) either before the program runs or
when it runs, we are changing the language semantics so that we do not prevent X at all — we allow it and
extend our evaluation rules to give it a semantics.

Advantages and Disadvantages of Static Checking

Now that we know what static and dynamic typing are, let’s wade into the decades-old argument about
which is better. We know static typing catches many errors for you early, soundness ensures certain kinds
of errors do not remain, and incompleteness means some perfectly fine programs are rejected. We will not
answer definitively whether static typing is desirable (if nothing else it depends what you are checking), but

16



we will consider seven specific claims and consider for each valid arguments made both for and against static
typing.

1. Is Static or Dynamic Typing More Convenient?

The argument that dynamic typing is more convenient stems from being able to mix-and-match different
kinds of data such as numbers, strings, and pairs without having to declare new type definitions or “clutter”
code with pattern-matching. For example, if we want a function that returns either a number or string, we
can just return a number or a string, and callers can use dynamic type predicates as necessary. In Racket,
we can write:

(define (f y) (if (> y 0) (+ y y) "hi"))
(let ([ans (f x)]) (if (number? ans) (number->string ans) ans))

In contrast, the analogous ML code needs to use a datatype, with constructors in £ and pattern-matching
to use the result:

datatype t = Int of int | String of string
fun f y = if y > O then Int(y+y) else String "hi"
val _ = case f x of Int i => Int.toString i | String s => s

On the other hand, static typing makes it more convenient to assume data has a certain type, knowing that
this assumption cannot be violated, which would lead to errors later. For a Racket function to ensure some
data is, for example, a number, it has to insert an explicit dynamic check in the code, which is more work
and harder to read. The corresponding ML code has no such awkwardness.

(define (cube x)
(if (not (number? x))
(error "cube expects a number")
(* x x x)))
(cube 7)

fun cube x = x * x * X
val _ = cube 7

Notice that without the check in the Racket code, the actual error would arise in the body of the multipli-
cation, which could confuse callers that did not know cube was implemented using multiplication.

2. Does Static Typing Prevent Useful Programs?

Dynamic typing does not reject programs that make perfect sense. For example, the Racket code below
binds > ((7 . 7) . (#t . #t)) to pair_of_pairs without problem, but the corresponding ML code does
not type-check since there is no type the ML type system can give to f.°

(define (f g) (comns (g 7) (g #t)))

5This is a limitation of ML. There are languages with more expressive forms of polymorphism that can type-check such code.
But due to undecidability, there are always limitations.
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(define pair_of_pairs (f (lambda (x) (cons x x))))

fun f g = (g 7, g true) (* does not type-check *)
val pair_of_pairs = f (fn x => (x,x))

Of course we can write an ML program that produces ((7,7), (true,true)), but we may have to “work
around the type-system” rather than do it the way we want.

On the other hand, dynamic typing derives its flexibility from putting a tag on every value. In ML and
other statically typed languages, we can do the same thing when we want to by using datatypes and explicit
tags. In the extreme, if you want to program like Racket in ML, you can use a datatype to represent “The
One Racket Type” and insert explicit tags and pattern-matching everywhere. While this programming style
would be painful to use everywhere, it proves the point that there is nothing we can do in Racket that we
cannot do in ML. (We discussed this briefly already above.)

datatype tort = Int of int

| String of string

| Pair of tort * tort

| Fun of tort -> tort

| Bool of bool

[ ...

fun f g = (case g of Fun g’ => Pair(g’ (Int 7), g’ (Bool true)))
val pair_of_pairs = £ (Fun (fn x => Pair(x,x)))

Perhaps an even simpler argument in favor of static typing is that modern type systems are expressive enough
that they rarely get in your way. How often do you try to write a function like £ that does not type-check
in ML?

3. Is Static Typing’s Early Bug-Detection Important?

A clear argument in favor of static typing is that it catches bugs earlier, as soon you statically check
(informally, “compile”) the code. A well-known truism of software development is that bugs are easier to fix
if discovered sooner, while the developer is still thinking about the code. Consider this Racket program:

(define (pow x)
(lambda (y)
(if (=y 0)
1
(x x (pow x (- y 1))))))

While the algorithm looks correct, this program has a bug: pow expects curried arguments, but the recursive
call passes pow two arguments, not via currying. This bug is not discovered until testing pow with a y not
equal to 0. The equivalent ML program simply does not type-check:

fun pow x y = (* does not type-check *)
if y=0
then 1
else x * pow (x,y-1)

18



Because static checkers catch known kinds of errors, expert programmers can use this knowledge to focus
attention elsewhere. A programmer might be quite sloppy about tupling versus currying when writing down
most code, knowing that the type-checker will later give a list of errors that can be quickly corrected. This
could free up mental energy to focus on other tasks, like array-bounds reasoning or higher-level algorithm
issues.

A dynamic-typing proponent would argue that static checking usually catches only bugs you would catch
with testing anyway. Since you still need to test your program, the additional value of catching some bugs
before you run the tests is reduced. After all, the programs below do not work as exponentiation functions
(they use the wrong arithmetic), ML’s type system will not detect this, and testing catches this bug and
would also catch the currying bug above.

(define (pow x) ; wrong algorithm
(lambda (y)
Gf (=y 0
1
(+ x ((pow x) (- y 1IN

fun pow x y = (* wrong algorithm *)
if y=0
then 1
else x + pow x (y - 1)

4. Does Static or Dynamic Typing Lead to Better Performance?

Static typing can lead to faster code since it does not need to perform type tests at run time. In fact,
much of the performance advantage may result from not storing the type tags in the first place, which takes
more space and slows down constructors. In ML, there are run-time tags only where the programmer uses
datatype constructors rather than everywhere.

Dynamic typing has three reasonable counterarguments. First, this sort of low-level performance does
not matter in most software. Second, implementations of dynamically typed languages can and do try to
optimize away type tests it can tell are unnecessary. For example, in (let ([x (+ y y)]1) (* x 4)), the
multiplication does not need to check that x and 4 are numbers and the addition can check y only once.
While no optimizer can remove all unnecessary tests from every program (undecidability strikes again), it
may be easy enough in practice for the parts of programs where performance matters. Third, if programmers
in statically typed languages have to work around type-system limitations, then those workarounds can erode
the supposed performance advantages. After all, ML programs that use datatypes have tags too.

5. Does Static or Dynamic Typing Make Code Reuse Easier?

Dynamic typing arguably makes it easier to reuse library functions. After all, if you build lots of different
kinds of data out of cons cells, you can just keep using car, cdr, cadr, etc. to get the pieces out rather than
defining lots of different getter functions for each data structure. On the other hand, this can mask bugs.
For example, suppose you accidentally pass a list to a function that expects a tree. If cdr works on both of
them, you might just get the wrong answer or cause a mysterious error later, whereas using different types
for lists and trees could catch the error sooner.

This is really an interesting design issue more general than just static versus dynamic typing. Often it is
good to reuse a library or data structure you already have especially since you get to reuse all the functions
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available for it. Other times it makes it too difficult to separate things that are really different conceptually
so it is better to define a new type. That way the static type-checker or a dynamic type-test can catch when
you put the wrong thing in the wrong place.

6. Is Static or Dynamic Typing Better for Prototyping?

Early in a software project, you are developing a prototype, often at the same time you are changing your
views on what the software will do and how the implementation will approach doing it.

Dynamic typing is often considered better for prototyping since you do not need to expend energy defining
the types of variables, functions, and data structures when those decisions are in flux. Moreover, you may
know that part of your program does not yet make sense (it would not type-check in a statically typed
language), but you want to run the rest of your program anyway (e.g., to test the parts you just wrote).

Static typing proponents may counter that it is never too early to document the types in your software design
even if (perhaps especially if) they are unclear and changing. Moreover, commenting out code or adding
stubs like pattern-match branches of the form _ => raise Unimplemented is often easy and documents
what parts of the program are known not to work.

7. Is Static or Dynamic Typing Better for Code Evolution?

A lot of effort in software engineering is spent maintaining working programs, by fixing bugs, adding new
features, and in general evolving the code to make some change.

Dynamic typing is sometimes more convenient for code evolution because we can change code to be more
permissive (accept arguments of more types) without having to change any of the pre-existing clients of the
code. For example, consider changing this simple function:

(define (f x) (* 2 x))
to this version, which can process numbers or strings:

(define (f x)
(if (number? x)
(* 2 x)
(string-append x x)))

No existing caller, which presumably uses £ with numbers, can tell this change was made, but new callers
can pass in strings or even values where they do not know if the value is a number or a string. If we make
the analogous change in ML, no existing callers will type-check since they all must wrap their arguments in
the Int constructor and use pattern-matching on the function result:

fun f x = 2 * x

datatype t = Int of int | String of string
fun f x =
case f x of
Int i => Int (2 * i)
| String s => String (s ~ s)
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On the other hand, static type-checking is very useful when evolving code to catch bugs that the evolution
introduces. When we change the type of a function, all callers no longer type-check, which means the type-
checker gives us an invaluable “to-do list” of all the call-sites that need to change. By this argument, the
safest way to evolve code is to change the types of any functions whose specification is changing, which is
an argument for capturing as much of your specification as you can in the types.

A particularly good example in ML is when you need to add a new constructor to a datatype. If you did
not use wildcard patterns, then you will get a warning for all the case-expressions that use the datatype.

As valuable as the “to-do list from the type-checker” is, it can be frustrating that the program will not run
until all items on the list are addressed or, as discussed under the previous claim, you use comments or stubs
to remove the parts not yet evolved.

Optional: eval and quote

(This short description barely scratches the surface of programming with eval. It really just introduces the
concept. Interested students are encouraged to learn more on their own.)

There is one sense where it is slightly fair to say Racket is an interpreted language: it has a primitive eval
that can take a representation of a program at run-time and evaluate it. For example, this program, which
is poor style because there are much simpler ways to achieve its purpose, may or may not print something
depending on x:

(define (make-some-code y)
(if y
(list ’begin (list ’print "hi") (list ’+ 4 2))
(1ist >+ 5 3)))
(define (f x)
(eval (make-some-code x)))

The Racket function make-some-code is strange: It does not ever print or perform an addition. All it does
is return some list containing symbols, strings, and numbers. For example, if called with #t, it returns

’(begin (print "hi") (+ 4 2))

This is nothing more and nothing less than a three element list where the first element is the symbol begin.
It is just Racket data. But if we look at this data, it looks just like a Racket program we could run. The
nested lists together are a perfectly good representation of a Racket expression that, if evaluated, would
print "hi" and have a result of 6.

The eval primitive takes such a representation and, at run-time, evaluates it. We can perform whatever
computation we want to generate the data we pass to eval. As a simple example, we could append together
two lists, like (1ist ’+ 2) and (list 3 4). If we call eval with the result > (+ 2 3 4), i.e., a 4-element
list, then eval returns 9.

Many languages have eval, many do not, and what the appropriate idioms for using it are is a subject of
significant dispute. Most would agree it tends to get overused but is also a really powerful construct that is
sometimes what you want.

Can a compiler-based language implementation (notice we did not say “compiled language”) deal with eval?
Well, it would need to have the compiler or an interpreter around at run-time since it cannot know in advance
what might get passed to eval. An interpreter-based language implementation would also need an interpreter
or compiler around at run-time, but, of course, it already needs that to evaluate the “regular program.”
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In languages like Javascript and Ruby, we do not have the convenience of Racket syntax where programs
and lists are so similar-looking that eval can take a list-representation that looks exactly like Racket syntax.
Instead, in these languages, eval takes a string and interprets it as concrete syntax by first parsing it and
then running it. Regardless of language, eval will raise an error if given an ill-formed program or a program
that raises an error.

In Racket, it is painful and unnecessary to write make-some-code the way we did. Instead, there is a special
form quote that treats everything under it as symbols, numbers, lists, etc., not as functions to be called. So
we could write:

(define (make-some-code y)
(if y
(quote (begin (print "hi") (+ 4 2)))
(quote (+ 5 3))))

Interestingly, eval and quote are inverses: For any expression e, we should have (eval (quote e)) as a
terrible-style but equivalent way to write e.

Often quote is “too strong” — we want to quote most things, but it is convenient to evaluate some code
inside of what is mostly syntax we are building. Racket has quasiquote and unquote for doing this (see the
manual if interested) and Racket’s linguistic predecessors have had this functionality for decades. In modern
scripting languages, one often sees analogous functionality: the ability to embed expression evaluation inside
a string (which one might or might not then call eval on, just as one might or might not use a Racket
quote expression to build something for eval). This feature is sometimes called interpolation in scripting
languages, but it is just quasiquoting.
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Unit 7 Summary

Standard Description: This summary covers roughly the same material as class and recitation section. It
can help to read about the material in a narrative style and to have the material for an entire unit of the
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Ruby Logistics

The course website provides installation and basic usage instructions for Ruby and its REPL (called irb),
so that information is not repeated here. Note that for consistency we will require Ruby version 2.x.y (for
any x and y), although this is for homework purposes — the concepts we will discuss do not depend on an
exact version, naturally.

There is a great amount of free documentation for Ruby at http://ruby-doc.org and http://www.
ruby-lang.org/en/documentation/, We also recommend, Programming Ruby 1.9 & 2.0, The Pragmatic
Programmers’ Guide although this book is not free. Because the online documentation is excellent, the
other course materials may not describe in detail every language feature used in the lectures and homeworks
although it is also not our goal to make you hunt for things on purpose. In general, learning new language
features and libraries is an important skill after some initial background to point you in the right direction.


http://ruby-doc.org
http://www.ruby-lang.org/en/documentation/
http://www.ruby-lang.org/en/documentation/

Ruby Features Most Interesting for a PL Course

Ruby is a large, modern programming language with various features that make it popular. Some of these
features are useful for a course on programming-language features and semantics, whereas others are not
useful for our purposes even though they may be very useful in day-to-day programming. Our focus will
be on object-oriented programming, dynamic typing, blocks (which are almost closures), and mixins. We
briefly describe these features and some other things that distinguish Ruby here — if you have not seen an
object-oriented programming language, then some of this overview will not make sense until after learning
more Ruby.

e Ruby is a pure object-oriented language, which means all values in the language are objects. In Java,
as an example, some values that are not objects are null, 13, true, and 4.0. In Ruby, every expression
evaluates to an object.

e Ruby is class-based: Every object is an instance of a class. An object’s class determines what methods
an object has. (All code is in methods, which are like functions in the sense that they take arguments
and return results.) You call a method “on” an object, e.g., obj.m(3,4) evaluates the variable obj
to an object and calls its m method with arguments 3 and 4. Not all object-oriented languages are
class-based; see, for example, JavaScript.

e Ruby has mizins: The next course-unit will describe mixins, which strike a reasonable compromise
between multiple inheritance (like in C++) and interfaces (like in Java). Every Ruby class has one
superclass, but it can include any number of mixins, which, unlike interfaces, can define methods (not
just require their existence).

e Ruby is dynamically typed: Just as Racket allowed calling any function with any argument, Ruby
allows calling any method on any object with any arguments. If the receiver (the object on which we
call the method) does not define the method, we get a dynamic error.

e Ruby has many dynamic features: In addition to dynamic typing, Ruby allows instance variables
(called fields in many object-oriented languages) to be added and removed from objects and it allows
methods to be added and removed from classes while a program executes.

e Ruby has convenient reflection: Various built-in methods make it easy to discover at run-time proper-
ties about objects. As examples, every object has a method class that returns the object’s class, and
a method methods that returns an array of the object’s methods.

e Ruby has blocks and closures: Blocks are almost like closures and are used throughout Ruby libraries
for convenient higher-order programming. Indeed, it is rare in Ruby to use an explicit loop since
collection classes like Array define so many useful iterators. Ruby also has fully-powerful closures for
when you need them.

e Ruby is a scripting language: There is no precise definition of a what makes a language a scripting
language. It means the language is engineered toward making it easy to write short programs, providing
convenient access to manipulating files and strings (topics we will not discuss), and having less concern
for performance. Like many scripting languages, Ruby does not require that you declare variables
before using them and there are often many ways to say the same thing.

e Ruby is popular for web applications: The Ruby on Rails framework is a popular choice for developing

the server side of modern web-sites.

Recall that, taken together, ML, Racket, and Ruby cover three of the four combinations of functional vs.
object-oriented and statically vs. dynamically typed.



Our focus will be on Ruby’s object-oriented nature, not on its benefits as a scripting language. We also
will not discuss at all its support for building web applications, which is a main reason it is currently so
popular. As an object-oriented language, Ruby shares much with Smalltalk, a language that has basically
not changed since 1980. Ruby does have some nice additions, such as mixins.

Ruby is also a large language with a “why not” attitude, especially with regard to syntax. ML and Racket
(and Smalltalk) adhere rather strictly to certain traditional programming-language principles, such as defin-
ing a small language with powerful features that programmers can then use to build large libraries. Ruby
often takes the opposite view. For example, there are many different ways to write an if-expression.

The Rules of Class-Based OOP

Before learning the syntax and semantics of particular Ruby constructs, it is helpful to enumerate the “rules”
that describe languages like Ruby and Smalltalk. Everything in Ruby is described in terms of object-oriented
programming, which we abbreviate OOP, as follows:

1. All values (as usual, the result of evaluating expressions) are references to objects.

2. Given an object, code “communicates with it” by calling its methods. A synonym for calling a method
is sending a message. (In processing such a message, an object is likely to send other messages to other
objects, leading to arbitrarily sophisticated computations.)

3. Each object has its own private state. Only an object’s methods can directly access or update this
state.

4. Every object is an instance of a class.

5. An object’s class determines the object’s behavior. The class contains method definitions that dictate
how an object handles method calls it receives.

While these rules are mostly true in other OOP languages like Java or C#, Ruby makes a more complete
commitment to them. For example, in Java and C#, some values like numbers are not objects (violating
rule 1) and there are ways to make object state publicly visible (violating rule 3).

Objects, Classes, Methods, Variables, Etc.

(See also the example programs posted with the lecture materials, not all of which are repeated here.)
Class and method definitions

Since every object has a class, we need to define classes and then create instances of them (an object of class
C is an instance of C). (Ruby also predefines many classes in its language and standard library.) The basic
syntax (we will add features as we go) for creating a class Foo with methods m1, m2, ... mn can be:

class Foo
def mil

end

def m2 (x,y)



end

def mn z

end
end

Class names must be capitalized. They include method definitions. A method can take any number of
arguments, including 0, and we have a variable for each argument. In the example above, m1 takes 0
arguments, m2 takes two arguments, and mn takes 1 argument. Not shown here are method bodies. Like ML
and Racket functions, a method implicitly returns its last expression. Like Java/C#/C++, you can use an
explicit return statement to return immediately when helpful. (It is bad style to have a return at the end
of your method since it can be implicit there.)

Method arguments can have defaults in which case a caller can pass fewer actual arguments and the remaining
ones are filled in with defaults. If a method argument has a default, then all arguments to its right must
also have a default. An example is:

def myMethod (x,y,z=0,w="hi")

end

Calling methods

The method call e0.m(el, ..., en) evaluates €0, el, ..., en to objects. It then calls the method m in the
result of e0 (as determined by the class of the result of e0), passing the results of e1, ..., en as arguments. As
for syntax, the parentheses are optional. In particular, a zero-argument call is usually written e0.m, though
e0.m() also works.

To call another method on the same object as the currently executing method, you can write self.m(...)
or just m(...). (Java/C#/C++ work the same way except they use the keyword this instead of self.)

In OOP, another common name for a method call is a message send. So we can say e0.m el sends the result
of e0 the message m with the argument that is the result of el. This terminology is “more object-oriented”
— as a client, we do not care how the receiver (of the message) is implemented (e.g., with a method named
m) as long as it can handle the message. As general terminology, in the call e0.m args, we call the result of
evaluating e0 the receiver (the object receiving the message).

Instance variables

An object has a class, which defines its methods. It also has instance variables, which hold values (i.e.,
objects). Many languages (e.g., Java) use the term fields instead of instance variables for the same concept.
Unlike Java/C#/C++, our class definition does not indicate what instance variables an instance of the class
will have. To add an instance variable to an object, you just assign to it: if the instance variable does
not already exist, it is created. All instance variables start with an @, e.g., @foo, to distinguish them from
variables local to a method.

Each object has its own instance variables. Instance variables are mutable. An expression (in a method
body) can read an instance variable with an expression like @foo and write an instance variable with an
expression @foo = newValue. Instance variables are private to an object. There is no way to directly access
an instance variable of any other object. So @foo refers to the @foo instance variable of the current object,
i.e., self.@foo except self.@foo is not actually legal syntax.



Ruby also has class variables (which are like Java’s static fields). They are written @@foo. Class variables
are not private to an object. Rather, they are shared by all instances of the class, but are still not directly
accessible from objects of different classes.

Constructing an object

To create a new instance of class Foo, you write Foo.new(...) where (...) holds some number of arguments
(where, as with all method calls, the parentheses are optional and when there are zero or one arguments it
is preferred to omit them). The call to Foo.new will create a new instance of Foo and then, before Foo.new
returns, call the new object’s initialize method with all the arguments passed to Foo.new. That is, the
method initialize is special and serves the same role as constructors in other object-oriented languages.

Typical behavior for initialize is to create and initialize instance variables. In fact, the normal approach
is for initialize always to create the same instance variables and for no other methods in the class to
create instance variables. But Ruby does not require this and it may be useful on occasion to violate these
conventions. Therefore, different instances of a class can have different instance variables.

Ezxpressions and Local Variables

Most expressions in Ruby are actually method calls. Even el + e2 is just syntactic sugar for el.+ e2, i.e.,
call the + method on the result of el with the result of e2. Another example is puts e, which prints the
result of e (after calling its to_s method to convert it to a string) and then a newline. It turns out puts is
a method in all objects (it is defined in class Object and all classes are subclasses of Object — we discuss
subclasses later), so puts e is just self.puts e.

Not every expression is a method call. The most common other expression is some form of conditional.
There are various ways to write conditionals; see the example code posted with the lecture materials. As
discussed below, loop expressions are rare in Ruby code.

Like instance variables, variables local to a method do not have to be declared: The first time you assign to
x in a method will create the variable. The scope of the variable is the entire method body. It is a run-time
error to use a local variable that has not yet been defined. (In contrast, it is not a run-time error to use
an instance variable that has not yet been defined. Instead you get back the nil object, which is discussed
more below.)

Class Constants and Class Methods

A class constant is a lot like a class variable (see above) except that (1) it starts with a capital letter instead
of @@, (2) you should not mutate it, and (3) it is publicly visible. Outside of an instance of class C, you can
access a constant Foo of C with the syntax C::Foo. An example is Math: :PI.!

A class method is like an ordinary method (called an instance method to distinguish from class methods)
except (1) it does not have access to any of the instance variables or instance methods of an instance of the
class and (2) you can call it from outside the class C where it is defined with C.method_name args. There
are various ways to define a class method; the most common is the somewhat hard-to-justify syntax:

def self.method_name args

end

Class methods are called static methods in Java and C#.

1 Actually, Math is a module, not a class, so this is not technically an example, but modules can also have constants.



Visibility and Getters/Setters

As mentioned above, instance variables are private to an object: only method calls with that object as the
receiver can read or write the fields. As a result, the syntax is @foo and the self-object is implied. Notice
even other instances of the same class cannot access the instance variables. This is quite object-oriented:
you can interact with another object only by sending it messages.

Methods can have different wisibilities. The default is public, which means any object can call the method.
There is also private, which, like with instance variables, allows only the object itself to call the method
(from other methods in the object). In-between is protected: A protected method can be called by any
object that is an instance of the same class or any subclass of the class.

There are various ways to specify the visibility of a method. Perhaps the simplest is within the class definition
you can put public, private, or protected between method definitions. Reading top-down, the most recent
visibility specified holds for all methods until the next visibility is specified. There is an implicit public
before the first method in the class.

To make the contents of an instance variable available and/or mutable, we can easily define getter and setter
methods, which by convention we can give the same name as the instance variable. For example:

def foo
@foo
end

def foo= x
@foo = x
end

If these methods are public, now any code can access the instance variable @foo indirectly, by calling foo or
foo=. It sometimes makes sense to instead make these methods protected if only other objects of the same
class (or subclasses) should have access to the instance variables.

As a cute piece of syntactic sugar, when calling a method that ends in a = character, you can have spaces
before the =. Hence you can write e.foo = bar instead of e.foo= bar.

The advantage of the getter/setter approach is it remains an implementation detail that these methods are
implemented as getting and setting an instance variable. We, or a subclass implementer, could change this
decision later without clients knowing. We can also omit the setter to ensure an instance variable is not
mutated except perhaps by a method of the object.

As an example of a “setter method” that is not actually a setter method, a class could define:
def celsius_temp= x

Q@kelvin_temp = x + 273.15
end

A client would likely imagine the class has a @celsius_temp instance variable, but in fact it (presumably)
does not. This is a good abstraction that allows the implementation to change.
Because getter and setter methods are so common, there is shorter syntax for defining them. For example,

to define getters for instance variables @x, @y, and @z and a setter for @x, the class definition can just include:

attr_reader :y, :z # defines getters
attr_accessor :x # defines getters and setters



A final syntactic detail: If a method m is private, you can only call it as m or m(args). A call like x.m or
x.m(args) would break visibility rules. A call like self.m or self.m(args) would not break visibility, but
still is not allowed.

Some Syntax, Semantics, and Scoping To Get Used To

Ruby has a fair number of quirks that are often convenient for quickly writing useful programs but may take
some getting used to. Here are some examples; you will surely discover more.

e There are several forms of conditional expressions, including el if e2 (all on one line), which evaluates
el only if e2 is true (i.e., it reads right-to-left).

e Newlines are often significant. For example, you can write

if el
e2

else
e3

end

But if you want to put this all on one line, then you need to write if el then e2 else e3 end. Note,
however, indentation is never significant (only a matter of style).

e Conditionals can operate on any object and treat every object as “true” with two exceptions: false
and nil.

e As discussed above, you can define a method with a name that ends in =, for example:

def foo= x
@blah = x * 2
end

As expected, you can write e.foo=(17) to change e’s @blah instance variable to be 34. Better yet, you
can adjust the parentheses and spacing to write e.foo = 17. This is just syntactic sugar. It “feels”
like an assignment statement, but it is really a method call. Stylistically you do this for methods that
mutate an object’s state in some “simple” way (like setting a field).

e Where you write this in Java/C#/C++, you write self in Ruby.

e Remember variables (local, instance, or class) get automatically created by assignment, so if you mis-
spell a variable in an assignment, you end up just creating a different variable.

Everything is an Object

Everything is an object, including numbers, booleans, and nil (which is often used like null in Java). For
example, -42. abs evaluates to 42 because the Fixnum class defines the method abs to compute the absolute
value and -42 is an instance of Fixnum. (Of course, this is a silly expression, but x.abs where x currently
holds -42 is reasonable.)

All objects have a nil? method, which the class of nil defines to return true but other classes define to
return false. Like in ML and Racket, every expression produces a result, but when no particular result



makes sense, nil is preferred style (much like ML’s () and Racket’s void-object). That said, it is often
convenient for methods to return self so that subsequent method calls to the same object can be put
together. For example, if the foo method returns self, then you can write x.foo(14) .bar("hi") instead
of

x.foo(14)
x.bar("hi")

There are many methods to support reflection — learning about objects and their definition during program
execution — that are defined for all objects. For example, the method methods returns an array of the
names of the methods defined on an object and the method class returns the class of the object.? Such
reflection is occasionally useful in writing flexible code. It is also useful in the REPL or for debugging.

The Top-Level

You can define methods, variables, etc. outside of an explicit class definition. The methods are implicitly
added to class Object, which makes them available from within any object’s methods. Hence all methods
are really part of some class.?

Top-level expressions are evaluated in order when the program runs. So instead of Ruby specifying a main
class and method with a special name (like main), you can just create an object and call a method on it at
top-level.

Class Definitions are Dynamic

A Ruby program (or a user of the REPL) can change class definitions while a Ruby program is running.
Naturally this affects all users of the class. Perhaps surprisingly, it even affects instances of the class that
have already been created. That is, if you create an instance of Foo and then add or delete methods in Foo,
then the already-created object “sees” the changes to its behavior. After all, every object has a class and
the (current) class (definition) defines an object’s behavior.

This is usually dubious style because it breaks abstractions, but it leads to a simpler language definition:
defining classes and changing their definitions is just a run-time operation like everything else. It can certainly
break programs: If I change or delete the + method on numbers, I would not expect many programs to keep
working correctly. It can be useful to add methods to existing classes, especially if the designer of the class
did not think of a useful helper method.

The syntax to add or change methods is particularly simple: Just give a class definition including method
definitions for a class that is already defined. The method definitions either replace definitions for methods
previously defined (with the same name method name) or are added to the class (if no method with the
name previously existed).

Duck Typing

Duck typing refers to the expression, “If it walks like a duck and quacks like a duck, then it’s a duck” though
a better conclusion might be, “then there is no reason to concern yourself with the possibility that it might

2This class is itself just another object. Yes, even classes are objects.
3This is not entirely true because modules are not classes.



not be a duck.” In Ruby, this refers to the idea that the class of an object (e.g., “Duck”) passed to a method
is not important so long as the object can respond to all the messages it is expected to (e.g., “walk to x” or
“quack now”).

For example, consider this method:

def mirror_update pt
pt.x = pt.x * -1
end

It is natural to view this as a method that must take an instance of a particular class Point (not shown
here) since it uses methods x and x= defined in it. And the x getter must return a number since the result
of pt.x is sent the * message with -1 for multiplication.

But this method is more generally useful. It is not necessary for pt to be an instance of Point provided it
has methods x and x=.

Moreover, the x and x= methods need not be a getter and setter for an instance variable @x.

Even more generally, we do not need the x method to return a number. It just has to return some object
that can respond to the * message with argument -1.

Duck typing can make code more reusable, allowing clients to make “fake ducks” and still use your code.
In Ruby, duck typing basically “comes for free” as long you do not explicitly check that arguments are
instances of particular classes using methods like instance_of? or is_a? (discussed below when we introduce
subclassing).

Duck typing has disadvantages. The most lenient specification of how to use a method ends up describing the
whole implementation of a method, in particular what messages it sends to what objects. If our specification
reveals all that, then almost no variant of the implementation will be equivalent. For example, if we know
i is a number (and ignoring clients redefining methods in the classes for numbers), then we can replace i+i
with i*2 or 2xi. But if we just assume i can receive the + message with itself as an argument, then we
cannot do these replacements since i may not have a * method (breaking i*2) or it may not be the sort of
object that 2 expects as an argument to * (breaking 2%i).

Arrays

The Array class is very commonly used in Ruby programs and there is special syntax that is often used
with it. Instances of Array have all the uses that arrays in other programming languages have — and much,
much more. Compared to arrays in Java/C+#/C/etc., they are much more flexible and dynamic with fewer
operations being errors. The trade-off is they can be less efficient, but this is usually not a concern for
convenient programming in Ruby. In short, all Ruby programmers are familiar with Ruby arrays because
they are the standard choice for any sort of collection of objects.

In general, an array is a mapping from numbers (the indices) to objects. The syntax [el,e2,e3,e4] creates a
new array with four objects in it: The result of el is in index 0, the result of e2 is in index 1, and so on. (Notice
the indexing starts at 0.) There are other ways to create arrays. For example, Array.new(x) creates an array
of length x with each index initially mapped to nil. We can also pass blocks (see below for what blocks
actually are) to the Array.new method to initialize array elements. For example, Array.new(x) { 0 }
creates an array of length x with all elements initialized to 0 and Array.new(5) {li| -i } creates the
array [0,-1,-2,-3,-4].

The syntax for getting and setting array elements is similar to many other programming languages: The
expression a[i] gets the element in index i of the array referred to by a and a[i] = e sets the same array



index. As you might suspect in Ruby, we are really just calling methods on the Array class when we use
this syntax.

Here are some simple ways Ruby arrays are more dynamic and less error-causing than you might expect
compared to other programming languages:

e As usual in a dynamically typed language, an array can hold objects that are instances of different
classes, for example [14, "hi", false, 34].

e Negative array indices are interpreted from the end of the array. So a[-1] retrieves the last element
in the array a, a[-2] retrieves the second-to-last element, etc.

e There are no array-bounds errors. For the expression a[i], if a holds fewer than i+1 objects, then the
result will just be nil. Setting such an index is even more interesting: For a[i]=e, if a holds fewer
than i+1 objects, then the array will grow dynamically to hold i+1 objects, the last of which will be
the result of e, with the right number of nil objects between the old last element and the new last
element.

e There are many methods and operations defined in the standard library for arrays. If the operation
you need to perform on an array is at all general-purpose, peruse the documentation since it is surely
already provided. As two examples, the + operator is defined on arrays to mean concatenation (a
new array where all of the left-operand elements precede all of the right-operand elements), and the |
operator is like the + operator except it removes all duplicate elements from the result.

In addition to all the conventional uses for arrays, Ruby arrays are also often used where in other languages
we would use other constructs for tuples, stacks, or queues. Tuples are the most straightforward usage. After
all, given dynamic typing and less concern for efficiency, there is little reason to have separate constructs for
tuples and arrays. For example, for a triple, just use a 3-element array.

For stacks, the Array class defines convenient methods push and pop. The former takes an argument, grows
the array by one index, and places the argument at the new last index. The latter shrinks the array by one
index and returns the element that was at the old last index. Together, this is exactly the last-in-first-out
behavior that defines the behavior of a stack. (How this is implemented in terms of actually growing and
shrinking the underlying storage for the elements is of concern only in the implementation of Array.)

For queues, we can use push to add elements as just described and use the shift method to dequeue
elements. The shift method returns the object at index 0 of the array, removes it from the array, and shifts
all the other elements down one index, i.e., the object (if any) previously at index 1 is now at index 0, etc.
Though not needed for simple queues, Array also has an unshift method that is like push except it puts
the new object at index 0 and moves all other objects up by 1 index (growing the array size by 1).

Arrays are even more flexible than described here. For example, there are operations to replace any sequence
of array elements with the elements of any other array, even if the other array has a different length than
the sequence being replaced (hence changing the length of the array).

Overall, this flexible treatment of array sizes (growing and shrinking) is different from arrays in some other
programming languages, but it is consistent with treating arrays as maps from numeric indices to objects.

What we have not shown so far are operations that perform some computation using all the contents of an
array, such as mapping over the elements to make a new array, or computing a sum of them. That is because
the Ruby idioms for such computations use blocks, which we introduce next.
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Passing Blocks

While Ruby has while loops and for loops not unlike Java, most Ruby code does not use them. Instead,
many classes have methods that take blocks. These blocks are almost closures. For example, integers have
a times method that takes a block and executes it the number of times you would imagine. For example,

x.times { puts "hi" }

prints "hi" 3 times if x is bound to 3 in the environment.

Blocks are closures in the sense that they can refer to variables in scope where the block is defined. For
example, after this program executes, y is bound to 10:

y=7
[4,6,8].each { y += 1 }

Here [4,6,8] is an array with with 3 elements. Arrays have a method each that takes a block and executes
it once for each element. Typically, however, we want the block to be passed each array element. We do
that like this, for example to sum an array’s elements and print out the running sum at each point:

sum = 0

[4,6,8] .each { |xl|
sum += X
puts sum

}

Blocks, surprisingly, are not objects. You cannot pass them as “regular” arguments to a method. Rather,
any method can be passed either 0 or 1 blocks, separate from the other arguments. As seen in the examples
above, the block is just put to the right of the method call. It is also after any other “regular” arguments.
For example, the inject method is like the fold function we studied in ML and we can pass it an initial
accumulator as a regular argument:

sum = [4,6,8].inject(0) { lacc,elt| acc + elt }

(It turns out the initial accumulator is optional. If omitted, the method will use the array element in index
0 as the initial accumulator.)

In addition to the braces syntax shown here, you can write a block using do instead of { and end instead of
}. This is generally considered better style for blocks more than one line long.

When calling a method that takes a block, you should know how many arguments will be passed to the block
when it is called. For the each method in Array, the answer is 1, but as the first example showed, you can
ignore arguments if you have no need for them by omitting the |...|.

Many collections, including arrays, have a variety of block-taking methods that look very familiar to func-
tional programmers, including map. As another example, the select method is like the function we called
filter. Other useful iterators include any? (returns true if the block returns true for any element of the
collection), all? (returns true if the block returns true for every element of the collection), and several more.
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Using Blocks

While many uses of blocks involve calling methods in the standard library, you can also define your own
methods that take blocks. (The large standard library just makes it somewhat rare to need to do this.)

You can pass a block to any method. The method body calls the block using the yield keyword. For
example, this code prints "hi" 3 times:

def foo x
if x
yield
else
yield
yield
end
end
foo true { puts "hi" }
foo false { puts "hi" }

To pass arguments to a block, you put the arguments after the yield, e.g., yield 7 or yield(8,"str").

Using this approach, the fact that a method may expect a block is implicit; it is just that its body might
use yield. An error will result if yield is used and no block was passed. The behavior when the block and
the yield disagree on the number of arguments is somewhat flexible and not described in full detail here.
A method can use the block_given? primitive to see if the caller provided a block. You are unlikely to use
this method often: If a block is needed, it is conventional just to assume it is given and have yield fail if it is
not. In situations where a method may or may not expect a block, often other regular arguments determine
whether a block should be present. If not, then block_given? is appropriate.

Here is a recursive method that counts how many times it calls the block (with increasing numbers) before
the block returns a true result.

def count i
if yield i
1
else
1 + (count(i+1) {l|x| yield x})
end
end

The odd thing is that there is no direct way to pass the caller’s block as the callee’s block argument. But
we can create a new block {Ix| yield x} and the lexical scope of the yield in its body will do the right
thing. If blocks were actually function closures that we could pass as objects, then this would be unnecessary
function wrapping.

The Proc Class

Blocks are not quite closures because they are not objects. We cannot store them in a field, pass them as a
regular method argument, assign them to a variable, put them in an array, etc. (Notice in ML and Racket, we
could do the equivalent things with closures.) Hence we say that blocks are not “first-class values” because
a first-class value is something that can be passed and stored like anything else in the language.

12



However, Ruby has “real” closures too: The class Proc has instances that are closures. The method call in
Proc is how you apply the closure to arguments, for example x.call (for no arguments) or x.call(3,4).

To make a Proc out of a block, you can write lambda { ... } where { ... } is any block. Interestingly,
lambda is not a keyword. It is just a method in class Object (and every class is a subclass of Object, so
lambda is available everywhere) that creates a Proc out of a block it is passed. You can define your own
methods that do this too; consult the documentation for the syntax to do this.

Usually all we need are blocks, such as in these examples that pass blocks to compute something about an
array:

a = [3,5,7,9]
b = a.map {Ix| x + 1}
i = b.count {l|x| x >= 6}

But suppose we wanted to create an array of blocks, i.e., an array where each element was something we
could “call” with a value. You cannot do this in Ruby because arrays hold objects and blocks are not objects.
So this is an error:

c = a.map {Ixl| {lyl x >= y} } # wrong, a syntax error
But we can use lambda to create an array of instances of Proc:
¢ = a.map {|x| lambda {lyl| x >= y} }

Now we can send the call message to elements of the c array:

c[2].call 17
j = c.count {lx| x.call(s) }

Ruby’s design is an interesting contrast from ML and Racket, which just provide full closures as the natural
choice. In Ruby, blocks are more convenient to use than Proc objects and suffice in most uses, but program-
mers still have Proc objects when needed. Is it better to distinguish blocks from closures and make the more
common case easier with a less powerful construct, or is it better just to have one general fully powerful
feature?

Hashes and Ranges

The Hash and Range classes are two standard-library classes that are also very common but probably a little
less common than arrays. Like arrays, there is special built-in syntax for them. They are also similar to
arrays and support many of the same iterator methods, which helps us re-enforce the concept that “how to
iterate” can be separated from “what to do while iterating.”

A hash is like an array except the mapping is not from numeric indices to objects. Instead, the mapping is
from (any) objects to objects. If a maps to b, we call a a key and b a value. Hence a hash is a collection that
maps a set of keys (all keys in a hash are distinct) to values, where the keys and values are just objects. We
can create a hash with syntax like this:

{"SML" => 7, "Racket" => 12, "Ruby" => 42}
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As you might expect, this creates a hash with keys that here are strings. It is also common (and more
efficient) to use Ruby’s symbols for hash keys as in:

{:sml => 7, :racket => 12, :ruby => 42}

We can get and set values in a hash using the same syntax as for arrays, where again the key can be anything,
such as:

hi["a"] = "Found A"
hi[false] = "Found false"
hi["a"]

hi[false]

h1[42]

There are many methods defined on hashes. Useful ones include keys (return an array of all keys), values
(similar for values), and delete (given a key, remove it and its value from the hash). Hashes also support
many of the same iterators as arrays, such as each and inject, but some take the keys and the values as
arguments, so consult the documentation.

A range represents a contiguous sequence of numbers (or other things, but we will focus on numbers). For
example 1..100 represents the integers 1, 2, 3, ..., 100. We could use an array like Array.new(100) {|il| i},
but ranges are more efficiently represented and, as seen with 1..100, there is more convenient syntax to
create them. Although there are often better iterators available, a method call like (0..n).each {lil e}
is a lot like a for-loop from 0 to n in other programming languages.

It is worth emphasizing that duck typing lets us use ranges in many places where we might naturally expect
arrays. For example, consider this method, which counts how many elements of a have squares less than 50:

def foo a
a.count {|x| x*x < 50}
end

We might naturally expect foo to take arrays, and calls like foo [3,5,7,9] work as expected. But we can
pass to foo any object with a count method that expects a block taking one argument. So we can also do
foo (2..10), which evaluates to 6.

Subclassing and Inheritance

Basic Idea and Terminology

Subclassing is an essential feature of class-based OOP. If class C is a subclass of D, then every instance of C
is also an instance of D. The definition of C inherits the methods of D, i.e., they are part of C’s definition too.
Moreover, C can extend by defining new methods that C has and D does not. And it can override methods,
by changing their definition from the inherited definition. In Ruby, this is much like in Java. In Java, a
subclass also inherits the field definitions of the superclass, but in Ruby fields (i.e., instance variables) are
not part of a class definition because each object instance just creates its own instance variables.

Every class in Ruby except Object has one superclass.* The classes form a tree where each node is a class
and the parent is its superclass. The Object class is the root of the tree. In class-based languages, this is

4 Actually, the superclass of Object is BasicObject and BasicObject has no superclass, but this is not an important detail,
so we will ignore it.
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called the class hierarchy. By the definition of subclassing, a class has all the methods of all its ancestors in
the tree (i.e., all nodes between it and the root, inclusive), subject to overriding.

Some Ruby Specifics

e A Ruby class definition specifies a superclass with class C < D ... end to define a new class C with
superclass D. Omitting the < D implies < Object, which is what our examples so far have done.

e Ruby’s built-in methods for reflection can help you explore the class hierarchy. Every object has a
class method that returns the class of the object. Consistently, if confusingly at first, a class is itself
an object in Ruby (after all, every value is an object). The class of a class is Class. This class defines
a method superclass that returns the superclass.

e Every object also has methods is_a? and instance_of?. The method is_a? takes a class (e.g.,
x.is_a? Integer) and returns true if the receiver is an instance of Integer or any (transitive) subclass
of Integer, i.e., if it is below Integer in the class hierarchy. The method instance_of? is similar but
returns true only if the receiver is an instance of the class exactly, not a subclass. (Note that in Java
the primitive instanceof is analogous to Ruby’s is_a?.)

Using methods like is_a? and instanceof is “less object-oriented” and therefore often not preferred style.
They are in conflict with duck typing.

A First Example: Point and ColorPoint

Here are definitions for simple classes that describe simple two-dimensional points and a subclass that adds
a color (just represented with a string) to instances.

class Point
attr_accessor :x, :y
def initialize(x,y)

0x = x
Qy =y
end

def distFromOrigin
Math.sqrt(@x * @x + Qy * Qy)
end
def distFromOrigin2
Math.sqrt(x * x + y * y)
end
end
class ColorPoint < Point
attr_accessor :color
def initialize(x,y,c="clear")

super (x,y)
Q@color = ¢
end
end

There are many ways we could have defined these classes. Our design choices here include:

e We make the @x, @y, and @color instance variables mutable, with public getter and setter methods.

e The default “color” for a ColorPoint is "clear".
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e For pedagogical purposes revealed below, we implement the distance-to-the-origin in two different ways.
The distFromOrigin method accesses instance variables directly whereas distFromOrigin2 uses the
getter methods on self. Given the definition of Point, both will produce the same result.

The initialize method in ColorPoint uses the super keyword, which allows an overriding method to call
the method of the same name in the superclass. This is not required when constructing Ruby objects, but
it is often desired.

Why Use Subclassing?

We now consider the style of defining colored-points using a subclass of the class Point as shown above. It
turns out this is good OOP style in this case. Defining ColorPoint is good style because it allows us to
reuse much of our work from Point and it makes sense to treat any instance of ColorPoint as though it “is
a” Point.

But there are several alternatives worth exploring because subclassing is often overused in object-oriented
programs, so it is worth considering at program-design time whether the alternatives are better than sub-
classing.

First, in Ruby, we can extend and modify classes with new methods. So we could simply change the Point
class by replacing its initialize method and adding getter/setter methods for @color. This would be
appropriate only if every Point object, including instances of all other subclasses of Point, should have a
color or at least having a color would not mess up anything else in our program. Usually modifying classes
is not a modular change — you should do it only if you know it will not negatively affect anything in the
program using the class.

Second, we could just define ColorPoint “from scratch,” copying over (or retyping) the code from Point.
In a dynamically typed language, the difference in semantics (as opposed to style) is small: instances of
ColorPoint will now return false if sent the message is_a? with argument Point, but otherwise they will
work the same. In languages like Java/C#/C++, superclasses have effects on static typing. One advantage
of not subclassing Point is that any later changes to Point will not affect ColorPoint — in general in
class-based OOP, one has to worry about how changes to a class will affect any subclasses.

Third, we could have ColorPoint be a subclass of Object but have it contain an instance variable, call it
@pt, holding an instance of Point. Then it would need to define all of the methods defined in Point to
forward the message to the object in @pt. Here are two examples, omitting all the other methods (x=, y, y=,
distFromOrigin, distFromOrigin2):

def initialize(x,y,c="clear")
@pt = Point.new(x,y)
Q@color = ¢
end
def x
Opt.x # forward the message to the object in @pt
end

This approach is bad style since again subclassing is shorter and we want to treat a ColorPoint as though
it “is a” Point. But in general, many programmers in object-oriented languages overuse subclassing. In
situations where you are making a new kind of data that includes a pre-existing kind of data as a separate
sub-part of it, this instance-variable approach is better style.
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Overriding and Dynamic Dispatch

Now let’s consider a different subclass of Point, which is for three-dimensional points:

class ThreeDPoint < Point
attr_accessor :z
def initialize(x,y,z)

super (x,y)

0z =z
end
def distFromOrigin

d = super

Math.sqrt(d * d + @z * @z)
end

def distFromOrigin2
d = super
Math.sqrt(d * d + z * z)
end
end

Here, the code-reuse advantage is limited to inheriting methods x, x=, y, and y=, as well as using other
methods in Point via super. Notice that in addition to overriding initialize, we used overriding for
distFromOrigin and distFromOrigin2.

Computer scientists have been arguing for decades about whether this subclassing is good style. On the one
hand, it does let us reuse quite a bit of code. On the other hand, one could argue that a ThreeDPoint is not
conceptually a (two-dimensional) Point, so passing the former when some code expects the latter could be
inappropriate. Others say a ThreeDPoint is a Point because you can “think of it” as its projection onto the
plane where z equals 0. We will not resolve this legendary argument, but you should appreciate that often
subclassing is bad/confusing style even if it lets you reuse some code in a superclass.

The argument against subclassing is made stronger if we have a method in Point like distance that takes
another (object that behaves like a) Point and computes the distance between the argument and self.
If ThreeDPoint wants to override this method with one that takes another (object that behaves like a)
ThreeDPoint, then ThreeDPoint instances will not act like Point instances: their distance method will
fail when passed an instance of Point.

We now consider a much more interesting subclass of Point. Instances of this class PolarPoint behave
equivalently to instances of Point except for the arguments to initialize, but instances use an internal
representation in terms of polar coordinates (radius and angle):

class PolarPoint < Point
def initialize(r,theta)
@r = r
@theta = theta
end
def x
@r * Math.cos(@theta)
end
def y
@r * Math.sin(@theta)
end
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def x= a
b = y # avoids multiple calls to y method
@theta = Math.atan(b / a)
@r = Math.sqrt(a*a + b*b)
self

end

def y= b
a = y # avoid multiple calls to y method
@theta = Math.atan(b / a)
@r = Math.sqrt(a*a + b*b)
self

end

def distFromOrigin
Or

end

# distFromOrigin2 already works!!

end

Notice instances of PolarPoint do not have instance variables @x and @y, but the class does override the x,
x=, y, and y= methods so that clients cannot tell the implementation is different (modulo round-off of floating-
point numbers): they can use instances of Point and PolarPoint interchangeably. A similar example in
Java would still have fields from the superclass, but would not use them. The advantage of PolarPoint over
Point, which admittedly is for sake of example, is that distFromOrigin is simpler and more efficient.

The key point of this example is that the subclass does not override distFromOrigin2, but the
inherited method works correctly. To see why, consider the definition in the superclass:

def distFromOrigin2
Math.sqrt(x * x + y * y)
end

Unlike the definition of distFromOrigin, this method uses other method calls for the arguments to the
multiplications. Recall this is just syntactic sugar for:

def distFromOrigin2
Math.sqrt(self.x() * self.x() + self.y() * self.y())
end

In the superclass, this can seem like an unnecessary complication since self.x() is just a method that
returns @x and methods of Point can access @x directly, as distFromOrigin does.

However, overriding methods x and y in a subclass of Point changes how distFromOrigin2 behaves in
instances of the subclass. Given a PolarPoint instance, its distFromOrigin2 method is defined with the
code above, but when called, self.x and self.y will call the methods defined in PolarPoint, not the
methods defined in Point.

This semantics goes by many names, including dynamic dispatch, late binding, and wvirtual method calls.
There is nothing quite like it in functional programming, since the way self is treated in the environment
is special, as we discuss in more detail next.
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The Precise Definition of Method Lookup

The purpose of this discussion is to consider the semantics of object-oriented language constructs, particu-
larly calls to methods, as carefully as we have considered the semantics of functional language constructs,
particularly calls to closures. As we will see, the key distinguishing feature is what self is bound to in the
environment when a method is called. The correct definition is what we call dynamic dispatch.

The essential question we will build up to is given a call e0.m(el,e2, .. .en), what are the rules for “looking
up” what method definition m we call, which is a non-trivial question in the presence of overriding. But first,
let us notice that in general such questions about how we “look up” something are often essential to the
semantics of a programming language. For example, in ML, and Racket, the rules for looking up variables
led to lexical scope and the proper treatment of function closures. And in Racket, we had three different
forms of let-expressions exactly because they have different semantics for how to look up variables in certain
subexpressions.

In Ruby, the variable-lookup rules for local variables in methods and blocks are not too different from in ML
and Racket despite some strangeness from variables not being declared before they are used. But we also
have to consider how to “look up” instance variables, class variables, and methods. In all cases, the answer
depends on the object bound to self — and self is treated specially.

In any environment, self maps to some object, which we think of as the “current object” — the object
currently executing a method. To look up an instance variable @x, we use the object bound to self — each
object has its own state and we use self’s state. To look up a class variable @@x, we just use the state of
the object bound to self.class instead. To look up a method m for a method call is more sophisticated...

In class-based object-oriented languages like Ruby, the rule for evaluating a method call like e0.m(el, ... ,en)
is:

e Evaluate €0, el, ..., en to values, i.e., objects objO, obj1, ..., objn.

e Get the class of obj0. Every object “knows its class” at run-time. Think of the class as part of the
state of obj0.

e Suppose objO has class A. If m is defined in A, call that method. Otherwise recur with the superclass
of A to see if it defines m. Raise a “method missing” error if neither A nor any of its superclasses define
m. (Actually, in Ruby the rule is actually to instead call a method called method_missing, which any
class can define, so we again start looking in A and then its superclass. But most classes do not define
method_missing and the definition of it in Object raises the error we expect.)

e We have now found the method to call. If the method has formal arguments (i.e., argument names
or parameters) x1, x2, ..., xn, then the environment for evaluating the body will map x1 to obj1,
x2 to obj2, etc. But there is one more thing that is the essence of object-oriented programming and
has no real analogue in functional programming: We always have self in the environment. While
evaluating the method body, self is bound to obj0, the object that is the “receiver” of
the message.

The binding of self in the callee as described above is what is meant by the synonyms “late-binding,”
“dynamic dispatch,” and “virtual method calls.” It is central to the semantics of Ruby and other OOP
languages. It means that when the body of m calls a method on self (e.g., self.someMethod 34 or just
someMethod 34), we use the class of obj0 to resolve someMethod, not necessarily the class of the method we
are executing. This is why the PolarPoint class described above works as it does.

There are several important comments to make about this semantics:
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e Ruby’s mixins complicate the lookup rules a bit more, so the rules above are actually simplified by
ignoring mixins. When we study mixins, we will revise the method-lookup semantics accordingly.

e This semantics is quite a bit more complicated than ML/Racket function calls. It may not seem that
way if you learned it first, which is common because OOP and dynamic dispatch seem to be a focus in
many introductory programming courses. But it is truly more complicated: we have to treat the notion
of self differently from everything else in the language. Complicated does not necessarily mean it is
inferior or superior; it just means the language definition has more details that need to be described.
This semantics has clearly proved useful to many people.

e Java and C# have significantly more complicated method-lookup rules. They do have dynamic dispatch
as described here, so studying Ruby should help understand the semantics of method lookup in those
languages. But they also have static overloading, in which classes can have multiple methods with the
same name but taking different types (or numbers) of arguments. So we need to not just find some
method with the right name, but we have to find one that matches the types of the arguments at
the call. Moreover, multiple methods might match and the language specifications have a long list of
complicated rules for finding the best match (or giving a type error if there is no best match). In these
languages, one method overrides another only if its arguments have the same type and number. None
of this comes up in Ruby where “same method name” always means overriding and we have no static
type system. In C++, there are even more possibilities: we have static overloading and different forms
of methods that either do or do not support dynamic dispatch.

Dynamic Dispatch Versus Closures

To understand how dynamic dispatch differs from the lexical scope we used for function calls, consider this
simple ML code that defines two mutually recursive functions:

fun even x = if x=0 then true else odd (x-1)
and odd x = if x=0 then false else even (x-1)

This creates two closures that both have the other closure in their environment. If we later shadow the even
closure with something else, e.g.,

fun even x = false

that will not change how odd behaves. When odd looks up even in the environment where odd was defined,
it will get the function on the first line above. That is “good” for understanding how odd works just from
looking where is defined. On the other hand, suppose we wrote a better version of even like:

fun even x = (x mod 2) =0

Now our odd is not “benefiting from” this optimized implementation.

In OOP, we can use (abuse?) subclassing, overriding, and dynamic dispatch to change the behavior of odd
by overriding even:

class A
def even x
if x==0 then true else odd(x-1) end
end
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def odd x
if x==0 then false else even(x-1) end
end
end
class B < A
def even x # changes B’s odd too!
xh 2 ==
end
end

Now (B.new.odd 17) will execute faster because odd’s call to even will resolve to the method in B — all
because of what self is bound to in the environment. While this is certainly convenient in the short example
above, it has real drawbacks. We cannot look at one class (A) and know how calls to the code there will
behave. In a subclass, what if someone overrode even and did not know that it would change the behavior
of odd? Basically, any calls to methods that might be overridden need to be thought about very carefully. It
is likely often better to have private methods that cannot be overridden to avoid problems. Yet overriding
and dynamic dispatch is the biggest thing that distinguishes object-oriented programming from functional
programming.

Implementing Dynamic Dispatch Manually in Racket

Let’s now consider coding up objects and dynamic dispatch in Racket using nothing more than pairs and
functions.? This serves two purposes:

e It demonstrates that one language’s semantics (how the primitives like message send work in the
language) can typically be coded up as an idiom (simulating the same behavior via some helper
functions) in another language. This can help you be a better programmer in different languages that
may not have the features you are used to.

e It gives a lower-level way to understand how dynamic dispatch “works” by seeing how we would do
it manually in another language. An interpreter for an object-oriented language would have to do
something similar for automatically evaluating programs in the language.

Also notice that we did an analogous exercise to better understand closures earlier in the course: We showed
how to get the effect of closures in Java using objects and interfaces or in C using function pointers and
explicit environments.

Our approach will be different from what Ruby (or Java for that matter) actually does in these ways:

e Our objects will just contain a list of fields and a list of methods. This is not “class-based,” in which
an object would have a list of fields and a class-name and then the class would have the list of methods.
We could have done it that way instead.

e Real implementations are more efficient. They use better data structures (based on arrays or hashta-
bles) for the fields and methods rather than simple association lists.

Nonetheless, the key ideas behind how you implement dynamic dispatch still come through. By the way, we
are wise to do this in Racket rather than ML, where the types would get in our way. In ML, we would likely

5Though we did not study it, Racket has classes and objects, so you would not actually want to do this in Racket. The
point is to understand dynamic dispatch by manually coding up the same idea.
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end up using “one big datatype” to give all objects and all their fields the same type, which is basically
awkwardly programming in a Racket-like way in ML. (Conversely, typed OOP languages are often no
friendlier to ML-style programming unless they add separate constructs for generic types and closures.)

Our objects will just have fields and methods:
(struct obj (fields methods))

We will have fields hold an immutable list of mutable pairs where each element pair is a symbol (the field
name) and a value (the current field contents). With that, we can define helper functions get and set that
given an object and a field-name, return or mutate the field appropriately. Notice these are just plain Racket
functions, with no special features or language additions. We do need to define our own function, called
assoc-m below, because Racket’s assoc expects an immutable list of immutable pairs.

(define (assoc-m v xs)
(cond [(null? xs) #f]
[(equal? v (mcar (car xs))) (car xs)]
[#t (assoc-m v (cdr xs))]1))

(define (get obj fl1d)
(let ([pr (assoc-m fld (obj-fields obj))])
(if pr
(mcdr pr)
(error "field not found"))))

(define (set obj fld v)
(let ([pr (assoc-m fld (obj-fields obj))])
(if pr
(set-mcdr! pr v)
(error "field not found"))))

More interesting is calling a method. The methods field will also be an association list mapping method
names to functions (no mutation needed since we will be less dynamic than Ruby). The key to getting
dynamic dispatch to work is that these functions will all take an extra ezplicit argument that is implicit in
languages with built-in support for dynamic dispatch. This argument will be “self” and our Racket helper
function for sending a message will simply pass in the correct object:

(define (send obj msg . args)
(let ([pr (assoc msg (obj-methods obj))])
(if pr
((cdr pr) obj args)
(error "method not found" msg))))

Notice how the function we use for the method gets passed the “whole” object obj, which will be used
for any sends to the object bound to self. (The code above uses Racket’s support for variable-argument
functions because it is convenient — we could have avoided it if necessary. Here, send can take any number
of arguments greater than or equal to 2. The first argument is bound to obj, the second to msg, and all
others are put in a list (in order) that is bound to args. Hence we expect (cdr pr) to be a function that
takes two arguments: we pass obj for the first argument and the list args for the second argument.)

Now we can define make-point, which is just a Racket function that produces a point object:
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(define (make-point _x _y)
(obj
(list (mcons ’x _x)
(mcons ’y _y))
(list (cons ’get-x (lambda (self args) (get self ’x)))
(cons ’get-y (lambda (self args) (get self ’y)))
(cons ’set-x (lambda (self args) (set self ’x (car args))))
(cons ’set-y (lambda (self args) (set self ’y (car args))))
(cons ’distToOrigin
(lambda (self args)
(let ([a (send self ’get-x)]
[b (send self ’get-y)])
(sqrt (+ (x a a) (* b b)))))))))

Notice how each of the methods takes a first argument, which we just happen to call self, which has no
special meaning here in Racket. We then use self as an argument to get, set, and send. If we had some
other object we wanted to send a message to or access a field of, we would just pass that object to our helper
functions by putting it in the args list. In general, the second argument to each function is a list of the “real
arguments” in our object-oriented thinking.

By using the get, set, and send functions we defined, making and using points “feels” just like OOP:

(define pl (make-point 4 0))
(send pl ’get-x) ; 4
(send pl ’get-y) Y
(send pl ’distToOrigin) ; 4
(send pl ’set-y 3)

(send pl ’distToOrigin) ; 5

Now let’s simulate subclassing...

Our encoding of objects does not use classes, but we can still create something that reuses the code used to
define points. Here is code to create points with a color field and getter/setter methods for this field. The
key idea is to have the constructor create a point object with make-point and then extend this object by
creating a new object that has the extra field and methods:

(define (make-color-point _x _y _c)
(let ([pt (make-point _x _y)I1)
(obj
(cons (mcons ’color _c)
(obj-fields pt))
(append (list
(cons ’get-color (lambda (self args) (get self ’color)))
(cons ’set-color (lambda (self args) (set self ’color (car args)))))
(obj-methods pt)))))

We can use “objects” returned from make-color-point just like we use “objects” returned from make-point,
plus we can use the field color and the methods get-color and set-color.

The essential distinguishing feature of OOP is dynamic dispatch. Our encoding of objects “gets dynamic
dispatch right” but our examples do not yet demonstrate it. To do so, we need a “method” in a “superclass”
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to call a method that is defined/overridden by a “subclass.” As we did in Ruby, let’s define polar points
by adding new fields and overriding the get-x, get-y, set-x, and set-y methods. A few details about the
code below:

e As with color-points, our “constructor” uses the “superclass” constructor.
e As would happen in Java, our polar-point objects still have x and y fields, but we never use them.

e For simplicity, we just override methods by putting the replacements earlier in the method list than
the overridden methods. This works because assoc returns the first matching pair in the list.

Most importantly, the distToOrigin “method” still works for a polar point because the method calls in its
body will use the procedures listed with >get-x and ’get-y in the definition of make-polar-point just like
dynamic dispatch requires. The correct behavior results from our send function passing the whole object as
the first argument.

(define (make-polar-point _r _th)
(let ([pt (make-point #f #f)1)
(obj
(append (list (mcons ’r _r)
(mcons ’theta _th))
(obj-fields pt))
(append
(1ist
(cons ’set-r-theta
(lambda (self args)
(begin
(set self ’r (car args))
(set self ’theta (cadr args)))))
(cons ’get-x (lambda (self args)
(let ([r (get self ’r)]
[theta (get self ’theta)])
(* r (cos theta)))))
(cons ’get-y (lambda (self args)
(let ([r (get self ’r)]
[theta (get self ’theta)])
(* r (sin theta)))))
(cons ’set-x (lambda (self args)

(letx ([a (car args)]
[b (send self ’get-y)]
[theta (atan (/ b a))]
[r (sqrt (+ (* a a) (x b b)))])

(send self ’set-r-theta r theta))))
(cons ’set-y (lambda (self args)

(letx ([b (car args)]
[a (send self ’get-x)]
[theta (atan (/ b a))]
[r (sqrt (+ (* a a) (x b b)))1)

(send self ’set-r-theta r theta)))))
(obj-methods pt)))))

We can create a polar-point object and send it some messages like this:
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(define p3 (make-polar-point 4 3.1415926535))

(send p3
(send p3
(send p3
(send p3
(send p3

‘get-x) ; 4

’get-y) ; 0 (or a slight rounding error)
’distToOrigin) ; 4 (or a slight rounding error)
’set-y 3)

’distToOrigin) ; 5 (or a slight rounding error)
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Unit 8 Summary

Standard Description: This summary covers roughly the same material as class and recitation section. It
can help to read about the material in a narrative style and to have the material for an entire unit of the
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OOP Versus Functional Decomposition

We can compare procedural (functional) decomposition and object-oriented decomposition using the classic
example of implementing operations for a small expression language. In functional programming, we typically
break programs down into functions that perform some operation. In OOP, we typically break programs
down into classes that give behavior to some kind of data.

We show that the two approaches largely lay out the same ideas in exactly opposite ways, and which way
is “better” is either a matter of taste or depends on how software might be changed or ezrtended in the
future. We then consider how both approaches deal with operations over multiple arguments, which in many
object-oriented languages requires a technique called double (multiple) dispatch in order to stick with an
object-oriented style.



The Basic Set-Up

The following problem is the canonical example of a common programming pattern, and, not coincidentally,
is a problem we have already considered a couple times in the course. Suppose we have:

e Expressions for a small “language” such as for arithmetic
e Different variants of expressions, such as integer values, negation expressions, and addition expressions

e Different operations over expressions, such as evaluating them, converting them to strings, or deter-
mining if they contain the constant zero in them

This problem leads to a conceptual matriz (two-dimensional grid) with one entry for each combination of
variant and operation:

eval | toString | hasZero

Int
Add
Negate

No matter what programming language you use or how you approach solving this programming problem,
you need to indicate what the proper behavior is for each entry in the grid. Certain approaches or languages
might make it easier to specify defaults, but you are still deciding something for every entry.

The Functional Approach

In functional languages, the standard style is to do the following:

e Define a datatype for expressions, with one constructor for each variant. (In a dynamically typed
language, we might not give the datatype a name in our program, but we are still thinking in terms of
the concept. Similarly, in a language without direct support for constructors, we might use something
like lists, but we are still thinking in terms of defining a way to construct each variant of data.)

e Define a function for each operation.

e In each function, have a branch (e.g., via pattern-matching) for each variant of data. If there is a
default for many variants, we can use something like a wildcard pattern to avoid enumerating all the
branches.

Note this approach is really just procedural decomposition: breaking the problem down into procedures
corresponding to each operation.

This ML code shows the approach for our example: Notice how we define all the kinds of data in one place
and then the nine entries in the table are implemented “by column” with one function for each column:

exception BadResult of string

datatype exp =
Int of int
| Negate of exp
| Add of exp * exp

fun eval e =
case e of



Int => e

| Negate el => (case eval el of
Int i => Int (Ti)
| _ => raise BadResult "non-int in negation")
| Add(el,e2) => (case (eval el, eval e2) of

(Int i, Int j) => Int (i+j)
| _ => raise BadResult "non-ints in addition")

fun toString e =
case e of

Int i => Int.toString i
| Negate el => "—(” -~ (toString el) ~ ll)ll
| Add(e1,e2) => "(" " (toString el) ~ " + " " (toString e2) ~ ")"

fun hasZero e =

case e of
Int i => i=0
| Negate el => hasZero el
| Add(el,e2) => (hasZero el) orelse (hasZero e2)

The Object-Oriented Approach

In object-oriented languages, the standard style is to do the following:

e Define a class for expressions, with one abstract method for each operation. (In a dynamically typed
language, we might not actually list the abstract methods in our program, but we are still thinking in
terms of the concept. Similarly, in a language with duck typing, we might not actually use a superclass,
but we are still thinking in terms of defining what operations we need to support.)

e Define a subclass for each variant of data.

e In each subclass, have a method definition for each operation. If there is a default for many variants,
we can use a method definition in the superclass so that via inheritance we can avoid enumerating all
the branches.

Note this approach is a data-oriented decomposition: breaking the problem down into classes corresponding
to each data variant.

Here is the Ruby code, which for clarity has the different kinds of expressions subclass the Exp class. In a
statically typed language, this would be required and the superclass would have to declare the methods that
every subclass of Exp defines — listing all the operations in one place. Notice how we define the nine entries
in the table “by row” with one class for each row.

class Exp
# could put default implementations or helper methods here
end
class Int < Exp
attr_reader :i
def initialize i
@i =1
end
def eval
self



end
def toString

Q@i.to_s
end
def hasZero
i==
end

end

class Negate < Exp
attr_reader :e
def initialize e

Qe = e
end
def eval

Int.new(-e.eval.i) # error if e.eval has no i method (not an Int)
end
def toString
"-(" + e.toString + ")"
end
def hasZero
e.hasZero
end
end
class Add < Exp
attr_reader :el, :e2
def initialize(el,e2)

Qel = el
Qe2 = e2
end
def eval

Int.new(el.eval.i + e2.eval.i) # error if el.eval or e2.eval have no i method
end
def toString

"(" + el.toString + " + " + e2.toString + ")"

end
def hasZero
el.hasZero || e2.hasZero
end
end

The Punch-Line

So we have seen that functional decomposition breaks programs down into functions that perform some
operation and object-oriented decomposition breaks programs down into classes that give behavior to some
kind of data. These are so exactly opposite that they are the same — just deciding whether to lay out our
program “by column” or “by row.” Understanding this symmetry is invaluable in conceptualizing software
or deciding how to decompose a problem. Moreover, various software tools and IDEs can help you view a
program in a different way than the source code is decomposed. For example, a tool for an OOP language
that shows you all methods foo that override some superclass’ foo is showing you a column even though
the code is organized by rows.

So, which is better? It is often a matter of personal preference whether it seems “more natural” to lay out



the concepts by row or by column, so you are entitled to your opinion. What opinion is most common can
depend on what the software is about. For our expression problem, the functional approach is probably
more popular: it is “more natural” to have the cases for eval together rather than the operations for Negate
together. For problems like implementing graphical user interfaces, the object-oriented approach is probably
more popular: it is “more natural” to have the operations for a kind of data (like a MenuBar) together (such as
backgroundColor, height, and doIfMouseIsClicked rather than have the cases for doIfMouseIsClicked
together (for MenuBar, TextBox, SliderBar, etc.). The choice can also depend on what programming
language you are using, how useful libraries are organized, etc.

Extending the Code With New Operations or Variants

The choice between “rows” and “columns” becomes less subjective if we later extend our program by adding
new data variants or new operations.

Consider the functional approach. Adding a new operation is easy: we can implement a new function without
editing any existing code. For example, this function creates a new expression that evaluates to the same
result as its argument but has no negative constants:

fun noNegConstants e =
case e of
Int i => if i < 0 then Negate (Int("i)) else e
| Negate el  => Negate(noNegConstants el)
| Add(el,e2) => Add(noNegConstants el, noNegConstants e2)

On the other hand, adding a new data variant, such as Mult of exp * exp is less pleasant. We need to go
back and change all our functions to add a new case. In a statically typed language, we do get some help:
after adding the Mult constructor, if our original code did not use wildcard patterns, then the type-checker
will give a non-exhaustive pattern-match warning everywhere we need to add a case for Mult.

Again the object-oriented approach is exactly the opposite. Adding a new variant is easy: we can implement a
new subclass without editing any existing code. For example, this Ruby class adds multiplication expressions
to our language:

class Mult < Exp
attr_reader :el, :e2
def initialize(el,e2)

Q@el = el
Qe2 = e2
end
def eval

Int.new(el.eval.i * e2.eval.i) # error if el.eval or e2.eval has no i method
end
def toString

"(" + el.toString + " * " + e2.toString + ")"

end
def hasZero
el.hasZero || e2.hasZero
end
end

On the other hand, adding a new operation, such as noNegConstants, is less pleasant. We need to go back



and change all our classes to add a new method. In a statically typed language, we do get some help: after
declaring in the Exp superclass that all subclasses should have a noNegConstants method, the type-checker
will give an error for any class that needs to implement the method. (This static typing is using abstract
methods and abstract classes, which are discussed later.)

Planning for extensibility

As seen above, functional decomposition allows new operations and object-oriented decomposition allows new
variants without modifying existing code and without explicitly planning for it — the programming styles
“just work that way.” It is possible for functional decomposition to support new variants or object-oriented
decomposition to support new operations if you plan ahead and use somewhat awkward programming tech-
niques (that seem less awkward over time if you use them often).

We do not consider these techniques in detail here and you are not responsible for learning them. For object-
oriented programming, “the visitor pattern” is a common approach. This pattern often is implemented using
double dispatch, which is covered for other purposes below. For functional programming, we can define our
datatypes to have an “other” possibility and our operations to take in a function that can process the “other
data.” Here is the idea in SML:

datatype ’a ext_exp =

Int of int
| Negate of ’a ext_exp
| Add of ’a ext_exp * ’a ext_exp

| OtherExtExp of ’a

fun eval_ext (f,e) = (* notice we pass a function to handle extensions *)
case e of
Int i => i

| Negate el => 0 - (eval_ext (f,el))
| Add(el,e2) => (eval_ext (f,el)) + (eval_ext (f,e2))
| OtherExtExp e => f e

With this approach, we could create an extension supporting multiplication by instantiating ’a with exp * exp,
passing eval_ext the function (fn (x,y) => eval_ext(f,el) * eval_ext(f,e2)), and using OtherExtExp(el,e2)
for multiplying el and e2. This approach can support different extensions, but it does not support well com-

bining two extensions created separately.

Notice that it does not work to wrap the original datatype in a new datatype like this:

datatype myexp_wrong =
01dExp of exp
| MyMult of myexp_wrong * myexp_wrong

This approach does not allow, for example, a subexpression of an Add to be a MyMult.
Thoughts on Extensibility

It seems clear that if you expect new operations, then a functional approach is more natural and if you
expect new data variants, then an object-oriented approach is more natural. The problems are (1) the future
is often difficult to predict; we may not know what extensions are likely, and (2) both forms of extension
may be likely. Newer languages like Scala aim to support both forms of extension well; we are still gaining
practical experience on how well it works as it is a fundamentally difficult issue.

More generally, making software that is both robust and extensible is valuable but difficult. Extensibility
can make the original code more work to develop, harder to reason about locally, and harder to change



(without breaking extensions). In fact, languages often provide constructs exactly to prevent extensibility.
ML’s modules can hide datatypes, which prevents defining new operations over them outside the module.
Java’s final modifier on a class prevents subclasses.

Binary Methods With Functional Decomposition

The operations we have considered so far used only one value of a type with multiple data variants: eval,
toString, hasZero, and noNegConstants all operated on one expression. When we have operations that
take two (binary) or more (n-ary) variants as arguments, we often have many more cases. With functional
decomposition all these cases are still covered together in a function. As seen below, the OOP approach is
more cumbersome.

For sake of example, suppose we add string values and rational-number values to our expression language.
Further suppose we change the meaning of Add expressions to the following:

e If the arguments are ints or rationals, do the appropriate arithmetic.

e If either argument is a string, convert the other argument to a string (unless it already is one) and
return the concatenation of the strings.

So it is an error to have a subexpression of Negate or Mult evaluate to a String or Rational, but the
subexpressions of Add can be any kind of value in our language: int, string, or rational.

The interesting change to the SML code is in the Add case of eval. We now have to consider 9 (i.e., 3 % 3)
subcases, one for each combination of values produced by evaluating the subexpressions. To make this
explicit and more like the object-oriented version considered below, we can move these cases out into a
helper function add_values as follows:

fun eval e =
case e of

| Add(el,e2) => add_values (eval el, eval e2)

fun add_values (v1,v2) =
case (v1,v2) of

(Int i, Int j) => Int (i+j)

(Int i, String s) => String(Int.toString i " s)

(Int i, Rational(j,k)) => Rational (i*k+j,k)

(String s, Int i) => String(s ~ Int.toString i) (* not commutative *)

|
|
|
| (String s1, String s2) => String(sl ~ s2)

| (String s, Rational(i,j)) => String(s "~ Int.toString i ~ "/" ~ Int.toString j)

| (Rational _, Int _) => add_values(v2,vl) (* commutative: avoid duplication *)
| (Rational(i,j), String s) => String(Int.toString i ~ "/" "~ Int.toString j = s)

| (Rational(a,b), Rational(c,d)) => Rational (a*d+b*c,b*d)

| _ => raise BadResult "non-values passed to add_values"

Notice add_values is defining all 9 entries in this 2-D grid for how to add values in our language — a
different kind of matrix than we considered previously because the rows and columns are variants.



Int | String | Rational

Int
String
Rational

While the number of cases may be large, that is inherent to the problem. If many cases work the same
way, we can use wildcard patterns and/or helper functions to avoid redundancy. One common source of
redundancy is commutativity, i.e., the order of values not mattering. In the example above, there is only one
such case: adding a rational and an int is the same as adding an int and a rational. Notice how we exploit
this redundancy by having one case use the other with the call add_values(v2,v1).

Binary Methods in OOP: Double Dispatch

We now turn to supporting the same enhancement of strings, rationals, and enhanced evaluation rules for
Add in an OOP style. Because Ruby has built-in classes called String and Rational, we will extend our
code with classes named MyString and MyRational, but obviously that is not the important point. The
first step is to add these classes and have them implement all the existing methods, just like we did when we
added Mult previously. Then that “just” leaves revising the eval method of the Add class, which previously
assumed the recursive results would be instances of Int and therefore have a getter method i:

def eval
Int.new(el.eval.i + e2.eval.i) # error if el.eval or e2.eval have no i method
end

Now we could instead replace this method body with code like our add_values helper function in ML, but
helper functions like this are not OOP style. Instead, we expect add_values to be a method in the classes
that represent values in our language: An Int, MyRational, or MyString should “know how to add itself to
another value.” So in Add, we write:

def eval
el.eval.add_values e2.eval
end

This is a good start and now obligates us to have add_values methods in the classes Int, MyRational,
and MyString. By putting add_values methods in the Int, MyString, and MyRational classes, we nicely
divide our work into three pieces using dynamic dispatch depending on the class of the object that el.eval
returns, i.e., the receiver of the add_values call in the eval method in Add. But then each of these three
needs to handle three of the nine cases, based on the class of the second argument. One approach would be
to, in these methods, abandon object-oriented style (!) and use run-time tests of the classes to include the
three cases. The Ruby code would look like this:

class Int

def add_values v
if v.is_a? Int

elsif v.is_a? MyRational

else



end
end
end
class MyRational

def add_values v
if v.is_a? Int

elsif v.is_a? MyRational
else
end
end
end

class MyString

def add_values v
if v.is_a? Int

elsif v.is_a? MyRational
else
end

end
end

While this approach works, it is really not object-oriented programming. Rather, it is a mix of object-oriented
decomposition (dynamic dispatch on the first argument) and functional decomposition (using is_a? to figure
out the cases in each method). There is not necessarily anything wrong with that — it is probably simpler
to understand than what we are about to demonstrate — but it does give up the extensibility advantages of

OOP and really is not “full” OOP.

Here is how to think about a “full” OOP approach: The problem inside our three add_values methods is
that we need to “know” the class of the argument v. In OOP, the strategy is to replace “needing to know
the class” with calling a method on v instead. So we should “tell v’ to do the addition, passing self. And
we can “tell v’ what class self is because the add_values methods know that: In Int, self is an Int for
example. And the way we “tell v the class” is to call different methods on v for each kind of argument.

This technique is called double dispatch. Here is the code for our example, followed by additional explanation:

class Int

. # other methods not related to add_values
def add_values v # first dispatch

v.addInt self
end

def addInt v # second dispatch: v is Int

Int.new(v.i + i)
end

def addString v # second dispatch: v is MyString

MyString.new(v.s + i.to_s)



end
def addRational v # second dispatch: v is MyRational
MyRational.new(v.i+v.j*i,v.j)
end
end
class MyString
... # other methods not related to add_values
def add_values v # first dispatch
v.addString self
end
def addInt v # second dispatch: v is Int
MyString.new(v.i.to_s + s)
end
def addString v # second dispatch: v is MyString
MyString.new(v.s + s)
end
def addRational v # second dispatch: v is MyRational
MyString.new(v.i.to_s + "/" + v.j.to_s + s)
end
end
class MyRational
... # other methods not related to add_values
def add_values v # first dispatch
v.addRational self
end
def addInt v # second dispatch
v.addRational self # reuse computation of commutative operation
end
def addString v # second dispatch: v is MyString
MyString.new(v.s + i.to_s + "/" + j.to_s)
end
def addRational v # second dispatch: v is MyRational
a,b,c,d = 1i,j,v.i,v.j
MyRational.new(a*d+b*c,bxd)
end
end

Before understanding how all the method calls work, notice that we do now have our 9 cases for addition in
9 different methods:

e The addInt method in Int is for when the left operand to addition is an Int (in v) and the right
operation is an Int (in self).

e The addString method in Int is for when the left operand to addition is a MyString (in v) and the
right operation is an Int (in self).

e The addRational method in Int is for when the left operand to addition is a MyRational (in v) and
the right operation is an Int (in self).

e The addInt method in MyString is for when the left operand to addition is an Int (in v) and the right
operation is a MyString (in self).

e The addString method in MyString is for when the left operand to addition is a MyString (in v) and
the right operation is a MyString (in self).
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e The addRational method in MyString is for when the left operand to addition is a MyRational (in
v) and the right operation is a MyString (in self).

e The addInt method in MyRational is for when the left operand to addition is an Int (in v) and the
right operation is a MyRational (in self).

e The addString method in MyRational is for when the left operand to addition is a MyString (in v)
and the right operation is a MyRational (in self).

e The addRational method in MyRational is for when the left operand to addition is a MyRational (in
v) and the right operation is a MyRational (in self).

As we might expect in OOP, our 9 cases are “spread out” compared to in the ML code. Now we need to
understand how dynamic dispatch is picking the correct code in all 9 cases. Starting with the eval method in
Add, we have el.eval.add_values e2.eval. There are 3 add_values methods and dynamic dispatch will
pick one based on the class of the value returned by el.eval. This the “first dispatch.” Suppose el.eval is
an Int. Then the next call will be v.addInt self where self is el.eval and v is e2.eval. Thanks again
to dynamic dispatch, the method looked up for addInt will be the right case of the 9. This is the “second
dispatch.” All the other cases work analogously.

Understanding double dispatch can be a mind-bending exercise that re-enforces how dynamic dispatch works,
the key thing that separates OOP from other programming. It is not necessarily intuitive, but it what one
must do in Ruby/Java to support binary operations like our addition in an OOP style.

Notes:

e OOP languages with multimethods, discussed next, do not require the manual double dispatch we have
seen here.

e Statically typed languages like Java do not get in the way of the double-dispatch idiom. In fact, needing
to declare method argument and return types as well as indicating in the superclass the methods that
all subclasses implement can make it easier to understand what is going on. A full Java implementation
of our example is posted with the course materials. (It is common in Java to reuse method names for
different methods that take arguments of different types. Hence we could use add instead of addInt,
addString, and addRational, but this can be more confusing than helpful when first learning double
dispatch.)

Multimethods

It is mot true that all OOP languages require the cumbersome double-dispatch pattern to implement bi-
nary operations in a full OOP style. Languages with multimethods, also known as multiple dispatch,
provide more intuitive solutions. In such languages, the classes Int, MyString, and MyRational could
each define three methods all named add_values (so there would be nine total methods in the program
named add_values). Each add_values method would indicate the class it expects for its argument. Then
el.eval.add_values e2.eval would pick the right one of the 9 by, at run-time, considering the class of
the result of el.eval and the class of the result of e2.eval.

This is a powerful and different semantics than we have studied for OOP. In our study of Ruby (and
Java/C+# /C++ work the same way), the method-lookup rules involve the run-time class of the receiver (the
object whose method we are calling), not the run-time class of the argument(s). Multiple dispatch is “even
more dynamic dispatch” by considering the class of multiple objects and using all that information to choose
what method to call.
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Ruby does not support multimethods because Ruby is committed to having only one method with a particular
name in each class. Any object can be passed to this one method. So there is no way to have 3 add_values
methods in the same class and no way to indicate which method should be used based on the argument.

Java and C++ also do not have multimethods. In these languages you can have multiple methods in a class
with the same name and the method-call semantics does use the types of the arguments to choose what
method to call. But it uses the types of the arguments, which are determined at compile-time and not the
run-time class of the result of evaluating the arguments. This semantics is called static overloading. It is
considered useful and convenient, but it is not multimethods and does not avoid needing double dispatch in
our example.

C# has the same static overloading as Java and C++, but as of version 4.0 of the language one can achieve
the effect of multimethods by using the type “dynamic” in the right places. We do not discuss the details
here, but it is a nice example of combining language features to achieve a useful end.

Many OOP languages have had multimethods for many years — they are not a new idea. Perhaps the most
well-known modern language with multimethods is Clojure.

Multiple Inheritance

We have seen that the essence of object-oriented programming is inheritance, overriding, and dynamic
dispatch. All our examples have been classes with 1 (immediate) superclass. But if inheritance is so useful
and important, why not allow ways to use more code defined in other places such as another class. We now
begin discussing 3 related but distinct ideas:

o Multiple inheritance: Languages with multiple inheritance let one class extend multiple other classes.
It is the most powerful option, but there are some semantic problems that arise that the other ideas
avoid. Java and Ruby do not have multiple inheritance; C++ does.

e Mizins: Ruby allows a class to have one immediate superclass but any number of mixins. Because a
mixin is “just a pile of methods,” many of the semantic problems go away. Mixins do not help with
all situations where you want multiple inheritance, but they have some excellent uses. In particular,
elegant uses of mixins typically involve mixin methods calling methods that they assume are defined
in all classes that include the mixin. Ruby’s standard libraries make good use of this technique and
your code can too.

o Java/C#-style interfaces: Java/C+# classes have one immediate superclass but can “implement” any
number of interfaces. Because interfaces do not provide behavior — they only require that certain
methods exist — most of the semantic problems go away. Interfaces are fundamentally about type-
checking, which we will study more later in this unit, so there very little reason for them in a language
like Ruby. C++ does not have interfaces because inheriting a class with all “abstract” methods (or
“pure virtual” methods in C++-speak) accomplishes the same thing as described more below.

To understand why multiple inheritance is potentially useful, consider two classic examples:

e Consider a Point2D class with subclasses Point3D (adding a z-dimension) and ColorPoint (adding
a color attribute). To create a ColorPoint3D class, it would seem natural to have two immediate
superclasses, Point3D and ColorPoint so we inherit from both.

e Consider a Person class with subclasses Artist and Cowboy. To create an ArtistCowboy (someone
who is both), it would seem natural again to have two immediate superclasses. Note, however, that
both the Artist class and the Cowboy class have a method “draw” that have very different behaviors
(creating a picture versus producing a gun).
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Without multiple inheritance, you end up copying code in these examples. For example, ColorPoint3D
can subclass Point3D and copy code from ColorPoint or it can subclass ColorPoint and copy code from
Point3D.

If we have multiple inheritance, we have to decide what it means. Naively we might say that the new class has
all the methods of all the superclasses (and fields too in languages where fields are part of class definitions).
However, if two of the immediate superclasses have the same fields or methods, what does that mean? Does
it matter if the fields or methods are inherited from the same common ancestor? Let us explain these issues
in more detail before returning to our examples.

With single inheritance, the class hierarchy — all the classes in a program and what extends what — forms
a tree, where A extends B means A is a child of B in the tree. With multiple inheritance, the class hierarchy
may not be a tree. Hence it can have “diamonds” — four classes where one is a (not necessarily immediate)
subclass of two others that have a common (not necessarily immediate) superclass. By “immediate” we
mean directly extends (child-parent relationship) whereas we could say “transitive” for the more general
ancestor-descendant relationship.

With multiple superclasses, we may have conflicts for the fields / methods inherited from the different classes.
The draw method for ArtistCowboy objects is an obvious example where we would like somehow to have
both methods in the subclass, or potentially to override one or both of them. At the very least we need
expressions using super to indicate which superclass is intended. But this is not necessarily the only conflict.
Suppose the Person class has a pocket field that artists and cowboys use for different things. Then perhaps
an ArtistCowboy should have two pockets, even though the creation of the notion of pocket was in the
common ancestor Person.

But if you look at our ColorPoint3D example, you would reach the opposite conclusion. Here both Point3D
and ColorPoint inherit the notion of x and y from a common ancestor, but we certainly do not want a
ColorPoint3D to have two x methods or two @x fields.

These issues are some of the reasons language with multiple inheritance (most well-known is C++) need fairly
complicated rules for how subclassing, method lookup, and field access work. For example, C++ has (at
least) two different forms of creating a subclass. One always makes copies of all fields from all superclasses.
The other makes only one copy of fields that were initially declared by the same common ancestor. (This
solution would not work well in Ruby because instance variables are not part of class definitions.)

Mixins

Ruby has mizins, which are somewhere between multiple inheritance (see above) and interfaces (see below).
They provide actual code to classes that include them, but they are not classes themselves, so you cannot
create instances of them. Ruby did not invent mixins. Its standard-library makes good use of them, though.
A near-synonym for mixins is traits, but we will stick with what Ruby calls mixins.

To define a Ruby mixin, we use the keyword module instead of class. (Modules do a bit more than just
serve as mixins, hence the strange word choice.) For example, here is a mixin for adding color methods to a
class:

module Color
attr_accessor :color
def darken
self.color = "dark " + self.color
end
end
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This mixin defines three methods, color, color=, and darken. A class definition can include these methods
by using the include keyword and the name of the mixin. For example:

class ColorPt < Pt
include Color
end

This defines a subclass of Pt that also has the three methods defined by Color. Such classes can have other
methods defined/overridden too; here we just chose not to add anything additional. This is not necessarily
good style for a couple reasons. First, our initialize (inherited from Pt) does not create the @color field,
so we are relying on clients to call color= before they call color or they will get nil back. So overriding
initialize is probably a good idea. Second, mixins that use instance variables are stylistically questionable.
As you might expect in Ruby, the instance variables they use will be part of the object the mixin is included
in. So if there is a name conflict with some intended-to-be separate instance variable defined by the class
(or another mixin), the two separate pieces of code will mutate the same data. After all, mixins are “very
simple” — they just define a collection of methods that can be included in a class.

Now that we have mixins, we also have to reconsider our method lookup rules. We have to choose something
and this is what Ruby chooses: If obj is an instance of class C and we send message m to obj,

e First look in the class C for a definition of m.

Next look in mixins included in C. Later includes shadow earlier ones.

Next look in C’s superclass.

Next look in C’s superclass’ mixins.

Next look in C’s super-superclass.

e Etc.

Many of the elegant uses of mixins do the following strange-sounding thing: They define methods that call
other methods on self that are not defined by the mixin. Instead the mixin assumes that all classes that
include the mixin define this method. For example, consider this mixin that lets us “double” instances of
any class that has + defined:

module Doubler
def double
self + self # uses self’s + message, not defined in Doubler
end
end

If we include Doubler in some class C and call double on an instance of the class, we will call the + method
on the instance, getting an error if it is not defined. But if + is defined, everything works out. So now we
can easily get the convenience of doubling just by defining + and including the Doubler mixin. For example:

class AnotherPt
attr_accessor :x, :y
include Doubler
def + other # add two points
ans = AnotherPt.new
ans.x = self.x + other.x
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ans.y = self.y + other.y
ans
end
end

Now instances of AnotherPt have double methods that do what we want. We could even add double to
classes that already exist:

class String
include Doubler
end

Of course, this example is a little silly since the double method is so simple that copying it over and over
again would not be so burdensome.

The same idea is used a lot in Ruby with two mixins named Enumerable and Comparable. What Comparable
does is provide methods =, !'=, > >= < and <=, all of which assume the class defines <=>. What <=> needs
to do is return a negative number if its left argument is less than its right, 0 if they are equal, and a positive
number if the left argument is greater than the right. So now a class does not have to define all these
comparisons — it just defines <=> and includes Comparable. Consider this example for comparing names:

class Name

attr_accessor :first, :middle, :last

include Comparable

def initialize(first,last,middle="")
@first = first
Q@last = last
Omiddle = middle

end

def <=> other
1 = @last <=> other.last # <=> defined on strings
return 1 if 1 !'= 0
f = @first <=> other.first

return f if £ !'= 0
Omiddle <=> other.middle
end

end

Defining methods in Comparable is easy, but we certainly would not want to repeat the work for every class
that wants comparisons. For example, the > method is just:

def > other
(self <=> other) > O
end

The Enumerable module is where many of the useful block-taking methods that iterate over some data
structure are defined. Examples are any?, map, count, and inject. They are all written assuming the class
has the method each defined. So a class can define each, include the Enumerable mixin, and have all these
convenient methods. So the Array class for example can just define each and include Enumerable. Here is
another example for a range class we might define:!

1We wouldn’t actually define this because Ruby already has very powerful range classes.
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class MyRange
include Enumerable
def initialize(low,high)
Q@low = low
Ghigh = high
end
def each
i=0low
while i <= @high
yield i
i=i+l
end
end
end

Now we can write code like MyRange .new(4,8) .inject {|x,y| x+y} or MyRange.new(5,12).count {|i| i.odd?}.
Note that the map method in Enumerable always returns an instance of Array. After all, it does not “know

how” to produce an instance of any class, but it does know how to produce an array containing one element

for everything produced by each. We could define it in the Enumerable mixin like this:

def map
arr = []
each {|x| arr.push x }
arr

end

Mixins are not as powerful as multiple inheritance because we have to decide upfront what to make a class
and what to make a mixin. Given Artist and Cowboy classes, we still have no natural way to make an
ArtistCowboy. And it is unclear which of Artist or Cowboy or both we might want to define in terms of a
mixin.

Java/C#-Style Interfaces

In Java or C#, a class can have only one immediate superclass but it can implement any number of interfaces.
An interface is just a list of methods and each method’s argument types and return type. A class type-
checks only if it actually provides (directly or via inheritance) all the methods of all the interfaces it claims
to implement. An interface is a type, so if a class C implements interface I, then we can pass an instance
of C to a method expecting an argument of type I, for example. Interfaces are closer to the idea of “duck
typing” than just using classes as types (in Java and C# every class is also a type), but a class has some
interface type only if the class definition explicitly says it implements the interface. We discuss more about
OOP type-checking later in this unit.

Because interfaces do not actually define methods — they only name them and give them types — none of
the problems discussed above about multiple inheritance arise. If two interfaces have a method-name conflict,
it does not matter — a class can still implement them both. If two interfaces disagree on a method’s type,
then no class can possibly implement them both but the type-checker will catch that. Because interfaces do
not define methods, they cannot be used like mixins.

In a dynamically typed language, there is really little reason to have interfaces.? We can already pass any

2Probably the only use would be to change the meaning of Ruby’s is_a? to incorporate interfaces, but we can more directly
just use reflection to find out an object’s methods.

16



object to any method and call any method on any object. It is up to us to keep track “in our head”
(preferably in comments as necessary) what objects can respond to what messages. The essence of dynamic
typing is not writing down this stuff.

Bottom line: Implementing interfaces does not inherit code; it is purely related to type-checking in statically
typed languages like Java and C#. It makes the type systems in these languages more flexible. So Ruby
does not need interfaces.

Abstract Methods

Often a class definition has methods that call other methods that are not actually defined in the class. It
would be an error to create instances of such a class and use the methods such that “method missing” errors
occur. So why define such a class? Because the entire point of the class is to be subclassed and have different
subclasses define the missing methods in different ways, relying on dynamic dispatch for the code in the
superclass to call the code in the subclass. This much works just fine in Ruby — you can have comments
indicating that certain classes are there only for the purpose of subclassing.

The situation is more interesting in statically typed languages. In these languages, the purpose of type-
checking is to prevent “method missing” errors, so when using this technique we need to indicate that
instances of the superclass must not be created. In Java/C+# such classes are called “abstract classes.” We
also need to give the type of any methods that (non-abstract) subclasses must provide. These are “abstract
methods.” Thanks to subtyping in these languages, we can have expressions with the type of the superclass
and know that at run-time the object will actually be one of the subclasses. Furthermore, type-checking
ensures the object’s class has implemented all the abstract methods, so it is safe to call these methods. In
C++, abstract methods are called “pure virtual methods” and serve much the same purpose.

There is an interesting parallel between abstract methods and higher-order functions. In both cases, the
language supports a programming pattern where some code is passed other code in a flexible and reusable way.
In OOP, different subclasses can implement an abstract method in different ways and code in the superclass,
via dynamic dispatch, can then uses these different implementations. With higher-order functions, if a
function takes another function as an argument, different callers can provide different implementations that
are then used in the function body.

Languages with abstract methods and multiple inheritance (e.g., C+4) do not need interfaces. Instead we
can just use classes that have nothing but abstract (pure virtual) methods in them like they are interfaces
and have classes implementing these “interfaces” just subclass the classes. This subclassing is not inheriting
any code exactly because abstract methods do not define methods. With multiple inheritance, we are not
“wasting” our one superclass with this pattern.

Introduction to Subtyping

We previously studied static types for functional programs, in particular ML’s type system. ML uses its
type system to prevent errors like treating a number as a function. A key source of expressiveness in ML’s
type system (not rejecting too many programs that do nothing wrong and programmers are likely to write)
is parametric polymorphism, also known as generics.

So we should also study static types for object-oriented programs, such as those found in Java. If everything
is an object (which is less true in Java than in Ruby), then the main thing we would want our type system
to prevent is “method missing” errors, i.e., sending a message to an object that has no method for that
message. If objects have fields accessible from outside the object (e.g., in Java), then we also want to prevent
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“field missing” errors. There are other possible errors as well, like calling a method with the wrong number
of arguments.

While languages like Java and C# have generics these days, the source of type-system expressiveness most
fundamental to object-oriented style is subtype polymorphism, also known as subtyping. ML does not have
subtyping, though this decision is really one of language design (it would complicate type inference, for
example).

It would be natural to study subtyping using Java since it is a well-known object-oriented language with
a type system that has subtyping. But it is also fairly complicated, using classes and interfaces for types
that describe objects with methods, overriding, static overloading, etc. While these features have pluses
and minuses, they can complicate the fundamental ideas that underlie how subtyping should work in any
language.

So while we will briefly discuss subtyping in OOP, we will mostly use a small language with records (like in
ML, things with named fields holding contents — basically objects with public fields, no methods, and no
class names) and functions (like in ML or Racket). This will let us see how subtyping should — and should
not — work.

This approach has the disadvantage that we cannot use any of the language we have studied: ML does not
have subtyping and record fields are immutable, Racket and Ruby are dynamically typed, and Java is too
complicated for our starting point. So we are going to make up a language with just records, functions,
variables, numbers, strings, etc. and explain the meaning of expressions and types as we go.

A Made-Up Language of Records

To study the basic ideas behind subtyping, we will use records with mutable fields, as well as functions and
other expressions. Our syntax will be a mix of MLi and Java that keeps examples short and, hopefully, clear.
For records, we will have expressions for making records, getting a field, and setting a field as follows:

e In the expression {fl=el, f2=e2, ..., fn=en}, each fi is a field name and each ei is an ex-
pression. The semantics is to evaluate each ei to a value vi and the result is the record value
{f1=v1, £2=v2, ..., fn=vn}. So a record value is just a collection of fields, where each field has a
name and a contents.

e For the expression e.f, we evaluate e to a value v. If v is a record with an f field, then the result is
the contents of the £ field. Our type system will ensure v has an £ field.

e For the expression el.f = e2, we evaluate el and e2 to values vl and v2. If v1 is a record with an
f field, then we update the f field to have v2 for its contents. Our type system will ensure v1 has an
f field. Like in Java, we will choose to have the result of el.f = e2 be v2, though usually we do not
use the result of a field-update.

Now we need a type system, with a form of types for records and typing rules for each of our expressions.
Like in ML, let’s write record types as {f1:t1, £2:t2, ..., fn:tn}. For example, {x : real, y : reall}
would describe records with two fields named x and y that hold contents of type real. And

{foo: {x : real, y : real}, bar : string, baz : string} would describe a record with three fields
where the foo field holds a (nested) record of type {x : real, y : real}. We then type-check expressions
as follows:

e If el has type t1, e2 has type t2, ..., en has type tn, then {fi=el, f2=e2, ..., fn=en} has type
{f1:t1, £2:t2, ..., fn:tn}.
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e If e has a record type containing £ : t, then e.f has type t (else e.f does not type-check).

e If el has a record type containing £ : t and e2 has type t, thenel.f = e2 hastypet (elseel.f = e2
does not type-check).

Assuming the “regular” typing rules for other expressions like variables, functions, arithmetic, and function
calls, an example like this will type-check as we would expect:

fun distToOrigin (p:{x:real,y:reall}) =
Math.sqrt(p.x*p.x + p.y*p.y)

val pythag : {x:real,y:real} = {x=3.0, y=4.0}
val five : real = distToOrigin(pythag)

In particular, the function distToOrigin has type {x : real, y : real} -> real, where we write func-
tion types with the same syntax as in ML. The call distToOrigin(pythag) passes an argument of the right
type, so the call type-checks and the result of the call expression is the return type real.

This type system does what it is intended to do: No program that type-checks would, when evaluated, try
to look up a field in a record that does not have that field.

Wanting Subtyping

With our typing rules so far, this program would not type-check:

fun distToOrigin (p:{x:real,y:reall})
Math.sqrt(p.x*p.x + p.y*p.y)

val ¢ : {x:real,y:real,color:string} = {x=3.0, y=4.0, color="green"}
val five : real = distToOrigin(c)

In the call distToOrigin(c), the type of the argument is {x:real,y:real,color:string} and the type
the function expects is {x:real,y:reall}, breaking the typing rule that functions must be called with the
type of argument they expect. Yet the program above is safe: running it would not lead to accessing a field
that does not exist.

A natural idea is to make our type system more lenient as follows: If some expression has a record type
{f1:t1, ..., fn:tn}, then let the expression also have a type where some of the fields are removed. Then
our example will type-check: Since the expression ¢ has type {x:real,y:real,color:string}, it can also
have type {x:real,y:reall}, which allows the call to type-check. Notice we could also use c as an argument
to a function of type {color:string}->int, for example.

Letting an expression that has one type also have another type that has less information is the idea of
subtyping. (It may seem backwards that the subtype has more information, but that is how it works. A
less-backwards way of thinking about it is that there are “fewer” values of the subtype than of the supertype
because values of the subtype have more obligations, e.g., having more fields.)

The Subtyping Relation

We will now add subtyping to our made-up language, in a way that will not require us to change any of our
existing typing rules. For example, we will leave the function-call rule the same, still requiring that the type
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of the actual argument equal the type of the function parameter in the function definition. To do this, we
will add two things to our type system:

e The idea of one type being a subtype of another: We will write t1 <: t2 to mean t1 is a subtype of
t2.

e One and only new typing rule: If e has type t1 and t1 <: t2, then e (also) has type t2.

So now we just need to give rules for t1 <: t2, i.e., when is one type a subtype of another. This approach
is good language engineering — we have separated the idea of subtyping into a single binary relation that
we can define separately from the rest of the type system.

A common misconception is that if we are defining our own language, then we can make the typing and
subtyping rules whatever we want. That is only true if we forget that our type system is allegedly preventing
something from happening when programs run. If our goal is (still) to prevent field-missing errors, then we
cannot add any subtyping rules that would cause us to stop meeting our goal. This is what people mean
when they say, “Subtyping is not a matter of opinion.”

For subtyping, the key guiding principle is substitutability: If we allow t1 <: t2, then any value of type t1
must be able to be used in every way a t2 can be. For records, that means t1 should have all the fields that
t2 has and with the same types.

Some Good Subtyping Rules

Without further ado, we can now give four subtyping rules that we can add to our language to accept more
programs without breaking the type system. The first two are specific to records and the next two, while
perhaps seeming unnecessary, do no harm and are common in any language with subtyping because they
combine well with other rules:

e “Width” subtyping: A supertype can have a subset of fields with the same types, i.e., a subtype can
have “extra” fields

e “Permutation” subtyping: A supertype can have the same set of fields with the same types in a different
order.

e Transitivity: If t1 <: t2 and t2 <: t3, then t1 <: t3.
e Reflexivity: Every type is a subtype of itself: t <: t.
Notice that width subtyping lets us forget fields, permutation subtyping lets us reorder fields (e.g., so we can

pass a {x:real,y:real} in place of a {y:real,x:real}) and transitivity with those rules lets us do both
(e.g., so we can pass a {x:real,foo:string,y:real} in place of a {y:real,x:reall}).

Depth Subtyping: A Bad Idea With Mutation

Our subtyping rules so far let us drop fields or reorder them, but there is no way for a supertype to have a
field with a different type than in the subtype. For example, consider this example, which passes a “sphere”
to a function expecting a “circle.” Notice that circles and spheres have a center field that itself holds a
record.

fun circleY (c:{center:{x:real,y:real}, r:real}) =
c.center.y
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val sphere:{center:{x:real,y:real,z:real}, r:real}) = {center={x=3.0,y=4.0,z=0.0}, r=1.0}
val _ = circleY(sphere)

The type of circleY is {center:{x:real,y:real}, r:real}->real and the type of sphere is
{center:{x:real,y:real,z:real}, r:reall}, so the call circleY(sphere) can type-check only if

{center:{x:real,y:real,z:real}, r:real} <: {center:{x:real,y:real}, r:real}

This subtyping does not hold with our rules so far: We can drop the center field, drop the r field, or reorder
those fields, but we cannot “reach into a field type to do subtyping.”

Since we might like the program above to type-check since evaluating it does nothing wrong, perhaps we
should add another subtyping rule to handle this situation. The natural rule is “depth” subtyping for records:

e “Depth” subtyping: If ta <: tb, then {f1:t1,...,f:ta,...,fn:tn} <: {f1:t1,...,f:tb,...,fn:tn}.
This rule lets us use width subtyping on the field center to show
{center:{x:real,y:real,z:real}, r:real} <: {center:{x:real,y:real}, r:real}

so the program above now type-checks.

Unfortunately, this rule breaks our type system, allowing programs that we do not want to allow to type-
check! This may not be intuitive and programmers make this sort of mistake often — thinking depth
subtyping should be allowed. Here is an example:

fun setToOrigin (c:{center:{x:real,y:reall}, r:reall})=
c.center = {x=0.0, y=0.0}

val sphere:{center:{x:real,y:real,z:real}, r:real}) = {center={x=3.0,y=4.0,2z=0.0}, r=1.0}
val _ = setToOrigin(sphere)
val _ = sphere.center.z

This program type-checks in much the same way: The call setToOrigin(sphere) has an argument of type
{center:{x:real,y:real,z:real}, r:real} and uses it as a {center:{x:real,y:real}, r:reall}. But
what happens when we run this program? setToOrigin mutates its argument so the center field holds a
record with no z field! So the last line, sphere.center.z will not work: it tries to read a field that does not
exist.

The moral of the story is simple if often forgotten: In a language with records (or objects) with getters and
setters for fields, depth subtyping is unsound — you cannot have a different type for a field in the subtype
and the supertype.

Note, however, that if a field is not settable (i.e., it is immutable), then the depth subtyping rule is sound
and, like we saw with circleY, useful. So this is yet another example of how not having mutation makes
programming easier. In this case, it allows more subtyping, which lets us reuse code more.

Another way to look at the issue is that given the three features of (1) setting a field, (2) letting depth
subtyping change the type of a field, and (3) having a type system actually prevent field-missing errors, you
can have any two of the three.
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The Problem With Java/C# Array Subtyping

Now that we understand depth subtyping is unsound if record fields are mutable, we can question how Java
and C# treat subtyping for arrays. For the purpose of subtyping, arrays are very much like records, just
with field names that are numbers and all fields having the same type. (Since e1[e2] computes what index
to access and the type system does not restrict what index might be the result, we need all fields to have the
same type so that the type system knows the type of the result.) So it should very much surprise us that
this code type-checks in Java:

class Point { ... } // has fields double x, y
class ColorPoint extends Point { ... } // adds field String color

void ml(Point[] pt_arr) {
pt_arr[0] = new Point(3,4);
}
String m2(int x) {
ColorPoint[] cpt_arr = new ColorPoint[x];
for(int i=0; i < x; i++)
cpt_arr[i] = new ColorPoint(0,0,"green");
ml(cpt_arr);
return cpt_arr[0].color;

}

The call m1 (cpt_arr) uses subtyping with ColorPoint[] <: Point[], which is essentially depth subtyping
even though array indices are mutable. As a result, it appears that cpt_arr[0] .color will read the color
field of an object that does not have such a field.

What actually happens in Java and C# is the assignment pt_arr[0] = new Point(3,4); will raise an
exception if pt_arr is actually an array of ColorPoint. In Java, this is an ArrayStoreException. The
advantage of having the store raise an exception is that no other expressions, such as array reads or object-
field reads, need run-time checks. The invariant is that an object of type ColorPoint []1 always holds objects
that have type ColorPoint or a subtype, not a supertype like Point. Since Java allows depth subtyping on
arrays, it cannot maintain this invariant statically. Instead, it has a run-time check on all array assignments,
using the “actual” type of array elements and the “actual” class of the value being assigned. So even though
in the type system pt_arr[0] and new Point(3,4) both have type Point, this assignment can fail at
run-time.

As usual, having run-time checks means the type system is preventing fewer errors, requiring more care
and testing, plus the run-time cost of performing these checks on array updates. So why were Java and
C# designed this way? It seemed important for flexibility before these languages had generics so that, for
example, if you wrote a method to sort an array of Point objects, you could use your method to sort an
array of ColorPoint objects. Allowing this makes the type system simpler and less “in your way” at the
expense of statically checking less. Better solutions would be to use generics in combination with subtyping
(see bounded polymorphism in the next lecture) or to have support for indicating that a method will not
update array elements, in which case depth subtyping is sound.

null in Java/C#

While we are on the subject of pointing out places where Java/C# choose dynamic checking over the
“natural” typing rules, the far more ubiquitous issue is how the constant null is handled. Since this value
has no fields or methods (in fact, unlike nil in Ruby, it is not even an object), its type should naturally
reflect that it cannot be used as the receiver for a method or for getting/setting a field. Instead, Java and
C# allow null to have any object type, as though it defines every method and has every field. From a static
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checking perspective, this is exactly backwards. As a result, the language definition has to indicate that
every field access and method call includes a run-time check for null, leading to the NullPointerException
errors that Java programmers regularly encounter.

So why were Java and C# designed this way? Because there are situations where it is very convenient to have
null, such as initializing a field of type Foo before you can create a Foo instance (e.g., if you are building
a cyclic list). But it is also very common to have fields and variables that should never hold null and you
would like to have help from the type-checker to maintain this invariant. Many proposals for incorporating
“cannot be null” types into programming languages have been made, but none have yet “caught on” for
Java or C#. In contrast, notice how ML uses option types for similar purposes: The types t option and t
are not the same type; you have to use NONE and SOME constructors to build a datatype where values might
or might not actually have a t value.

Function Subtyping

The rules for when one function type is a subtype of another function type are even less intuitive than the
issue of depth subtyping for records, but they are just as important for understanding how to safely override
methods in object-oriented languages (see below).

When we talk about function subtyping, we are talking about using a function of one type in place of a
function of another type. For example, if £ takes a function g of type t1->t2, can we pass a function of type
t3->t4 instead? If t3->t4 is a subtype of t1->t2 then this is allowed because, as usual, we can pass the
function £ an argument that is a subtype of the type expected. But this is not “function subtyping” on f
— it is “regular” subtyping on function arguments. The “function subtyping” is deciding that one function
type is a subtype of another.

To understand function subtyping, let’s use this example of a higher-order function, which computes the
distance between the two-dimensional point p and the result of calling £ with p:

fun distMoved (f : {x:real,y:real}->{x:real,y:reall,
p : {x:real,y:real}) =
let val p2 : {x:real,y:real} = f p
val dx : real = p2.x - p.x
val dy : real = p2.y - p.y
in Math.sqrt(dx*dx + dy*dy) end

The type of distMoved is
(({x:real,y:real}->{x:real,y:real}) * {x:real,y:real}) -> real
So a call to distMoved requiring no subtyping could look like this:

fun flip p = {x="p.x, y="p.y}
val d = distMoved(flip, {x=3.0, y=4.0})

The call above could also pass in a record with extra fields, such as {x=3.0,y=4.0,color="green"}, but this
is just ordinary width subtyping on the second argument to distMoved. Our interest here is deciding what
functions with types other than {x:real,y:real}->{x:real,y:real} can be passed for the first argument
to distMoved.

First, it is safe to pass in a function with a return type that “promises” more, i.e., returns a subtype of the
needed return type for the function {x:real,y:real}. For example, it is fine for this call to type-check:
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fun flipGreen p = {x="p.x, y="p.y, color="green"}
val d = distMoved(flipGreen, {x=3.0, y=4.0})

The type of flipGreen is
{x:real,y:real} -> {x:real,y:real,color:string}

This is safe because distMoved expects a {x:real,y:real}->{x:real,y:real} and flipGreen is substi-
tutable for values of such a type since the fact that £1ipGreen returns a record that also has a color field
is not a problem.

In general, the rule here is that if ta <: tb, then t -> ta <: t -> tb, i.e., the subtype can have a return
type that is a subtype of the supertype’s return type. To introduce a little bit of jargon, we say return types
are covariant for function subtyping meaning the subtyping for the return types works “the same way” (co)
as for the types overall.

Now let us consider passing in a function with a different argument type. It turns out argument types are
NOT covariant for function subtyping. Consider this example call to distMoved:

fun flipIfGreen p = if p.color = '"green"
then {x="p.x, y="p.y}
else {x=p.x, y=p.y}

val d = distMoved(flipIfGreen, {x=3.0, y=4.01})

The type of f1ipIfGreen is
{x:real,y:real,color:string} -> {x:real,y:real}

This program should not type-check: If we run it, the expression p.color will have a “no such field” error
since the point passed to f1ipIfGreen does not have a color field. In short, ta <: tb, does NOT mean
ta -> t <: tb -> t. This would amount to using a function that “needs more of its argument” in place
of a function that “needs less of its argument.” This breaks the type system since the typing rules will not
require the “more stuff” to be provided.

But it turns out it works just fine to use a function that “needs less of its argument” in place of a function

that “needs more of its argument.” Consider this example use of distMoved:

fun f1lipX_Y0 p = {x="p.x, y=0.0}
val d = distMoved(flipX_YO, {x=3.0, y=4.0})

The type of £1ipX_YO is
{x:real} -> {x:real,y:real}

since the only field the argument to £1ipX_YO needs is x. And the call to distMoved causes no problem:
distMoved will always call its £ argument with a record that has an x field and a y field, which is more than
f£1ipX_YO needs.

In general, the treatment of argument types for function subtyping is “backwards” as follows: If tb <: ta,
then ta -> t <: tb -> t. The technical jargon for “backwards” is contravariance, meaning the subtyping
for argument types is the reverse (contra) of the subtyping for the types overall.

As a final example, function subtyping can allow contravariance of arguments and covariance of results:
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fun flipXMakeGreen p = {x="p.x, y=0.0, color="green"}
val d = distMoved(flipXMakeGreen, {x=3.0, y=4.0})

Here f1ipXMakeGreen has type

{x:real} -> {x:real,y:real,color:string}

This is a subtype of

{x:real,y:real} -> {x:real,y:real}

because {x:real,y:real} <: {x:real} (contravariance on arguments) and

{x:real,y:real,color:string} <: {x:real,y:reall} (covariance on results).

The general rule for function subtyping is: If t3 <: t1 and t2 <: t4, then t1->t2 <: t3->t4. This rule,
combined with reflexivity (every type is a subtype of itself) lets us use contravariant arguments, covariant
results, or both.

Argument contravariance is the least intuitive concept in the course, but it is worth burning into your
memory so that you do not forget it. Many very smart people get confused because it is not about calls
to methods/functions. Rather it is about the methods/functions themselves. We do not need function
subtyping for passing non-function arguments to functions: we can just use other subtyping rules (e.g., those
for records). Function subtyping is needed for higher-order functions or for storing functions themselves in
records. And object types are related to having records with functions (methods) in them.

Subtyping for OOP

As promised, we can now apply our understanding of subtyping to OOP languages like Java or C+#.

An object is basically a record holding fields (which we assume here are mutable) and methods. We assume
the “slots” for methods are immutable: If an object’s method m is implemented with some code, then there
is no way to mutate m to refer to different code. (An instance of a subclass could have different code for m,
but that is different than mutating a record field.)

With this perspective, sound subtyping for objects follows from sound subtyping for records and functions:

e A subtype can have extra fields.
e Because fields are mutable, a subtype cannot have a different type for a field.
e A subtype can have extra methods.

e Because methods are immutable, a subtype can have a subtype for a method, which means the method
in the subtype can have contravariant argument types and a covariant result type.

That said, object types in Java and C# do not look like record types and function types. For example, we
cannot write down a type that looks something like:

{fields : x:real, y:real,
methods: distToOrigin : () -> real, ...}
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Instead, we reuse class names as types where if there is a class Foo, then the type Foo includes in it all fields
and methods implied by the class definition (including superclasses). And, as discussed previously, we also
have interfaces, which are more like record types except they do not include fields and we use the name
of the interface as a type. Subtyping in Java and C# includes only the subtyping explicitly stated via the
subclass relationship and the interfaces that classes explicitly indicate they implement (including interfaces
implemented by superclasses).

All said, this approach is more restrictive than subtyping requires, but since it does not allow anything it
should not, it soundly prevents “field missing” and “method missing” errors. In particular:

e A subclass can add fields but not remove them
e A subclass can add methods but not remove them
e A subclass can override a method with a covariant return type

e A class can implement more methods than an interface requires or implement a required method with
a covariant return type

Classes and types are different things! Java and C# purposely confuse them as a matter of convenience, but
you should keep the concepts separate. A class defines an object’s behavior. Subclassing inherits behavior,
modifying behavior via extension and override. A type describes what fields an object has and what messages
it can respond to. Subtyping is a question of substitutability and what we want to flag as a type error. So
try to avoid saying things like, “overriding the method in the supertype” or, “using subtyping to pass an
argument of the superclass.” That said, this confusion is understandable in languages where every class
declaration introduces a class and a type with the same name.

Covariant self/this

As a final subtle detail and advanced point, Java’s this (i.e., Ruby’s self) is treated specially from a type-
checking perspective. When type-checking a class C, we know this will have type C or a subtype, so it is
sound to assume it has type C. In a subtype, e.g., in a method overriding a method in C, we can assume
this has the subtype. None of this causes any problems, and it is essential for OOP. For example, in class
B below, the method m can type-check only if this has type B, not just A.

class A {
int m(){ return 0; }
}
class B extends A {
int x;
int m(){ return x; }
}

But if you recall our manual encoding of objects in Racket, the encoding passed this as an extra explicit
argument to a method. That would suggest contravariant subtyping, meaning this in a subclass could not
have a subtype, which it needs to have in the example above.

It turns out this is special in the sense that while it is like an extra argument, it is an argument that is
covariant. How can this be? Because it is not a “normal” argument where callers can choose “anything” of
the correct type. Methods are always called with a this argument that is a subtype of the type the method
expects.
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This is the main reason why coding up dynamic dispatch manually works much less well in statically typed
languages, even if they have subtyping: You need special support in your type system for this.

Generics Versus Subtyping

We have now studied both subtype polymorphism, also known as subtyping, and parametric polymorphism,
also known as generic types, or just generics. So let’s compare and contrast the two approaches, demon-
strating what each is designed for.

What are generics good for?

There are many programming idioms that use generic types. We do not consider all of them here, but let’s
reconsider probably the two most common idioms that came up when studying higher-order functions.

First, there are functions that combine other functions such as compose:
val compose : (b -> ’¢) * (Pa -> ’b) -> (Pa -> ’c¢)

Second, there are functions that operate over collections/containers where different collections/containers
can hold values of different types:

val length : ’a list -> int
val map : (’a -> ’b) -> ’a list -> ’b list
val swap : (’a * ’b) -> (’b * ’a)

In all these cases, the key point is that if we had to pick non-generic types for these functions, we would
end up with significantly less code reuse. For example, we would need one swap function for producing an
int * bool from a bool * int and another swap function for swapping the positions of an int * int.

Generic types are much more useful and precise than just saying that some argument can “be anything.”
For example, the type of swap indicates that the second component of the result has the same type as the
first component of the argument and the first component of the result has the same type as the second
component of the argument. In general, we reuse a type variable to indicate when multiple things can have
any type but must be the same type.

Generics in Java

Java has had subtype polymorphism since its creation in the 1990s and has had parametric polymorphism
since 2004. Using generics in Java can be more cumbersome without ML’s support for type inference and,
as a separate matter, closures, but generics are still useful for the same programming idioms. Here, for
example, is a generic Pair class, allowing the two fields to have any type:

class Pair<T1,T2> {
Tl x;
T2 y;
Pair(T1 _x, T2 _y){ x = _x; y = _y; }
Pair<T2,T1> swap() {
return new Pair<T2,T1>(y,x);

3
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Notice that, analogous to ML, “Pair” is not a type: something like Pair<String, Integer> is a type. The
swap method is, in object-oriented style, an instance method in Pair<T1,T2> that returns a Pair<T2,T1>.
We could also define a static method:

static <T1,T2> Pair<T2,T1> swap(Pair<T1,T2> p) {
return new Pair<T2,T1>(p.y,p.x);

}

For reasons of backwards-compatibility, the previous paragraph is not quite true: Java also has a type Pair
that “forgets” what the types of its fields are. Casting to and from this “raw” type leads to compile-time
warnings that you would be wise to heed: Ignoring them can lead to run-time errors in places you would not
expect.

Subtyping is a Bad Substitute for Generics

If a language does not have generics or a programmer is not comfortable with them, one often sees generic
code written in terms of subtyping instead. Doing so is like painting with a hammer instead of a paintbrush:
technically possible, but clearly the wrong tool. Consider this Java example:

class LamePair {
Object x;
Object y;
LamePair(Object _x, Object _y){ x=_x; y=_y; }
LamePair swap() { return new LamePair(y,x); }

String s = (String) (new LamePair("hi",4).y); // error caught only at run-time

The code in LamePair type-checks without problem: the fields x and y have type Object, which is a
supertype of every class and interface. The difficulties arise when clients use this class. Passing arguments
to the constructor works as expected with subtyping.? But when we retrieve the contents of a field, getting
an Object is not very useful: we want the type of value we put back in.

Subtyping does not work that way: the type system knows only that the field holds an Object. So we have
to use a downcast, e.g., (String)e, which is a run-time check that the result of evaluating e is actually of
type String, or, in general, a subtype thereof. Such run-time checks have the usual dynamic-checking costs
in terms of performance, but, more importantly, in terms of the possibility of failure: this is not checked
statically. Indeed, in the example above, the downcast would fail: it is the x field that holds a String, not
the y field.

In general, when you use Object and downcasts, you are essentially taking a dynamic typing approach: any
object could be stored in an Object field, so it is up to programmers, without help from the type system, to
keep straight what kind of data is where.

What is Subtyping Good For?

We do not suggest that subtyping is not useful: It is great for allowing code to be reused with data that has
“extra information.” For example, geometry code that operates over points should work fine for colored-
points. It is certainly inconvenient in such situations that ML code like this simply does not type-check:

fun distToOriginl {x=x,y=y} =

3 Java will automatically convert a 4 to an Integer object holding a 4.
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Math.sqrt (x*x + y*y)

(* does not type-check *)
(x val five = distToOriginl {x=3.0,y=4.0,color="red"} *)

A generally agreed upon example where subtyping works well is graphical user interfaces. Much of the code
for graphics libraries works fine for any sort of graphical element (“paint it on the screen,” “change the
background color,” “report if the mouse is clicked on it,” etc.) where different elements such as buttons,
slider bars, or text boxes can then be subtypes.

Generics are a Bad Substitute for Subtyping

In a language with generics instead of subtyping, you can code up your own code reuse with higher-order
functions, but it can be quite a bit of trouble for a simple idea. For example, distToOrigin2 below uses
getters passed in by the caller to access the x and y fields and then the next two functions have different
types but identical bodies, just to appease the type-checker.

fun distToOrigin2(getx,gety,v) =

let

val x = getx v

val y = gety v
in

Math.sqrt (x*x + y*y)
end

fun distToOriginPt (p : {x:real,y:real}) =
distToOrigin2(fn v => #x v,
fn v => #y v,
p)

fun distToOriginColorPt (p : {x:real,y:real,color:string}) =
distToOrigin2(fn v => #x v,
fn v => #y v,
p)

Nonetheless, without subtyping, it may sometimes be worth writing code like distToOrigin2 if you want it
to be more reusable.

Bounded Polymorphism

As Java and C# demonstrate, there is no reason why a statically typed programming language cannot have
generic types and subtyping. There are some complications from having both that we will not discuss (e.g.,
static overloading and subtyping are more difficult to define), but there are also benefits. In addition to
the obvious benefit of supporting separately the idioms that each feature supports well, we can combine the
ideas to get even more code reuse and expressiveness.

The key idea is to have bounded generic types, where instead of just saying “a subtype of T” or “for all types
’a,” we can say, “for all types ’a that are a subtype of T.” Like with generics, we can then use ’a multiple
times to indicate where two things must have the same type. Like with subtyping, we can treat ’a as a
subtype of T, accessing whatever fields and methods we know a T has.
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We will show an example using Java, which hopefully you can follow just by knowing that List<Foo> is the
syntax for the type of lists holding elements of type Foo.

Consider this Point class with a distance method:

class Pt {
double x, y;
double distance(Pt pt) { return Math.sqrt((x-pt.x)*(x-pt.x)+(y-pt.y)*(y-pt.y)); 1}
Pt(double _x, double _y) { x = _x; y = _y; }

}

Now consider this static method that takes a list of points pts, a point center, and a radius radius and
returns a new list of points containing all the input points within radius of center, i.e., within the circle
defined by center and radius:

static List<Pt> inCircle(List<Pt> pts, Pt center, double radius) {
List<Pt> result = new ArrayList<Pt>();
for(Pt pt : pts)
if (pt.distance(center) <= radius)
result.add(pt);
return result;

(Understanding the code in the method body is not important.)

This code works perfectly fine for a List<Pt>, but if ColorPt is a subtype of Pt (adding a color field and
associated methods), then we cannot call inCircle method above with a List<ColorPt> argument. Because
depth subtyping is unsound with mutable fields, List<ColorPt> is not a subtype of List<Pt>. Even if it
were, we would like to have a result type of List<ColorPt> when the argument type is List<ColorPt>.

For the code above, this is true: If the argument is a List<ColorPt>, then the result will be too, but we
want a way to express that in the type system. Java’s bounded polymorphism lets us describe this situation
(the syntax details are not important):

static <T extends Pt> List<T> inCircle(List<T> pts, Pt center, double radius) {
List<T> result = new ArrayList<T>();
for(T pt : pts)
if (pt.distance(center) <= radius)
result.add(pt);
return result;

This method is polymorphic in type T, but T must be a subtype of Pt. This subtyping is necessary so that
the method body can call the distance method on objects of type T. Wonderful!

Optional: Additional Java-Specific Bounded Polymorphism

While the second version of inCircle above is ideal, let us now consider a few variations. First, Java does
have enough dynamically checked casts that it is possible to use the first version with a List<ColorPt>
argument and cast the result from List<Pt> to List<ColorPt>. We have to use the “raw type” List to do
it, something like this where cps has type List<ColorPt>.
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List<ColorPt> out = (List<ColorPt>) (List) inCircle((List<Pt>) (List)cps, new Pt(0.0,0.0), 1.5);

In this case, these casts turn out to be okay: if inCircle is passed a List<ColorPt> the result will be a
List<ColorPt>. But casts like this are dangerous. Consider this variant of the method that has the same
type as the initial non-generic inCircle method:

static List<Pt> inCircle(List<Pt> pts, Pt center, double radius) {
List<Pt> result = new ArrayList<Pt>(Q);
for(Pt pt : pts)
if (pt.distance(center) <= radius)
result.add(pt);
else
result.add(center);
return result;

The difference is that any points not within the circle are “replaced” in the output by center. Now if we
call inCircle with a List<ColorPt> cps where one of the points is not within the circle, then the result
is not a List<ColorPt> — it contains a Pt object! You might expect then that the cast of the result to
List<ColorPt> would fail, but Java does not work this way for backward-compatibility reasons: even this
cast succeeds. So now we have a value of type List<ColorPt> that is not a list of ColorPt objects. What
happens instead in Java is that a cast will fail later when we get a value from this alleged List<ColorPt>
and try to use it as ColorPt when it is in fact a Pt. The blame is clearly in the wrong place, which is why
using the warning-inducing casts in the first place is so problematic.

Last, we can discuss what type is best for the center argument in our bounded-polymorphic version. Above,
we chose Pt, but we could also choose T:

static <T extends Pt> List<T> inCircle(List<T> pts, T center, double radius) {
List<T> result = new ArrayList<T>();
for(T pt : pts)
if(pt.distance(center) <= radius)
result.add(pt);
return result;

It turns out this version allows fewer callers since the previous version allows, for example, a first argument
of type List<ColorPt> and a second argument of type Pt (and, therefore, via subtyping, also a ColorPt).
With the argument of type T, we require a ColorPt (or a subtype) when the first argument has type
List<ColorPt>. On the other hand, our version that sometimes adds center to the output requires the
argument to have type T:

static <T extends Pt> List<T> inCircle(List<T> pts, T center, double radius) {
List<T> result = new ArrayList<T>();
for(T pt : pts)
if (pt.distance(center) <= radius)
result.add(pt);
else
result.add(center);
return result;

31



In this last version, if center has type Pt, then the call result.add(center) does not type-check since Pt
may not be a subtype of T (what we know is T is a subtype of Pt). The actual error message may be a bit
confusing: It reports there is no add method for List<T> that takes a Pt, which is true: the add method we
are trying to use takes a T.
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